Communication Systems

2019 Fall - Midterm

Thursday, November 14, 2019.

1. Closed book.
2. 13:10~16:00 (170 minutes).

$$
\operatorname{rect}(t)=\left\{\begin{array}{ll}
1, & -\frac{1}{2}<t<\frac{1}{2} \\
0, & |t| \geq \frac{1}{2}
\end{array} \quad \operatorname{sinc}(\lambda) \equiv \frac{\sin (\pi \lambda)}{\pi \lambda} \quad u(t)=\left\{\begin{array}{ll}
1, & t>0 \\
\frac{1}{2}, & t=0 \\
0 & t<0
\end{array} \quad \operatorname{sgn}(t)= \begin{cases}+1, & t>0 \\
0, & t=0 \\
-1, & t<0\end{cases}\right.\right.
$$

Problem 1 [10]: Fourier Transform

(1). [2] Given $\exp (-a t) u(t) \rightleftharpoons \frac{1}{a+j 2 \pi f}, a>0$, please find the Fourier transform of a double exponential pulse $\exp (-a|t|), a>0$.
(2). [2] Please find the Fourier transform of $\operatorname{sgn}(t)$.
(3). [2] Please find the Fourier transform of a unit step function $u(t)$.
(4). [2] Please find the Fourier transform of $g(t)=\exp (-t) \sin \left(2 \pi f_{c} t\right) u(t)$.
(5). [2] Please find the energy of the sinc pulse: $E=A^{2} \int_{-\infty}^{\infty} \operatorname{sinc}^{2}(2 W t) d t$.

Problem 2. [10] Prove the following properties.
(1). [2] $g_{1}(t) * g_{2}(t)=g_{2}(t) * \mathrm{~g}_{1}(t)$.
(2). [2] $g_{1}(t) *\left[\mathrm{~g}_{2}(t) * g_{3}(t)\right]=\left[\mathrm{g}_{1}(t) * g_{2}(t)\right] * g_{3}(t)$.
(3). [2] $g_{1}(t) *\left[\mathrm{~g}_{2}(t)+g_{3}(t)\right]=\mathrm{g}_{1}(t) * g_{2}(t)+g_{1}(t) * g_{3}(t)$.
(4). [2] $\frac{d}{d t}\left[g_{1}(t) * g_{2}(t)\right]=\frac{d}{d t}\left[g_{1}(t)\right] * g_{2}(t)$.
(5). [2]

$$
\int_{-\infty}^{t}\left[g_{1}(\tau) * g_{2}(\tau)\right] d \tau=\left[\int_{-\infty}^{t} g_{1}(\tau) d \tau\right] * g_{2}(t)
$$

Problem 3. [10] The Fourier transform of a signal $g(t)$ is denoted by $G(f)$. Prove the following properties of the Fourier transform:
(1). [2] If a real signal $g(t)$ is an even function of time t, the Fourier transform $G(f)$ is purely real. If a real signal $g(t)$ is an odd function of time t, the Fourier transform $G(f)$ is purely imaginary.
(2). [2] $t^{n} g(t) \Leftrightarrow\left(\frac{j}{2 \pi}\right)^{n} G^{(n)}(f)$, where $G^{(n)}(f)$ is the nth derivative of $G(f)$ with respect to f.
(3). [2] $\int_{-\infty}^{\infty} t^{n} g(t) d t \Leftrightarrow\left(\frac{j}{2 \pi}\right)^{n} G^{(n)}(0)$.
(4). [2] $\int_{-\infty}^{\infty} g_{1}(t) \mathrm{g}_{2}^{*}(t) d t \Leftrightarrow \int_{-\infty}^{\infty} G_{1}(f) \mathrm{G}_{2}^{*}(f) d f$.
(5). [2] $g_{1}(t) \mathrm{g}_{2}^{*}(t) \Leftrightarrow \int_{-\infty}^{\infty} G_{1}(\lambda) G_{2}^{*}(\lambda-f) d \lambda$.

Problem 4. [10] The signal $x(t)=30 \operatorname{sinc}(60 t)$ is applied to the nonlinear modulator system shown in the following figure with a carrier frequency of $f_{c}=1 \mathrm{kHz}$. Assume that $v_{\text {out }}=a_{1} v_{\text {in }}+a_{2} v_{\text {in }}^{3}$.
(1). [2] Sketch the spectrum of $x(t)$.
(2). [2] Determine the output signal $v_{\text {out }}(t)$.
(3). [2] Give the conditions on the required center frequency f_{0} and the bandwidth of the bandpass filter in relation to f_{c} and the bandwidth of the signal $x(t)$ such that this system will produce a standard DSB signal.
(4). [2] Determine the output DSB signal $\phi_{D S B}(t)$.
(5). [2] Determine values of a_{1} and a_{2} such that the maximum value of the amplitude of the output signal $\phi_{D S B}(t)$ is 10 .

Problem 5. [10] Costas Receiver

Describe the operations of a Costas Receiver as shown in the following figure. (Please derive the output signals of the product modulator, the low-pass filter, and the phase discriminator.)

Problem 6. [10] Show that an AM signal can be demodulated using coherent demodulation.
Problem 7. [10] The following figure shows the circuit diagram of a balance modulator. The input applied to the top AM modulator is $m(t)$, whereas that applied to the lower AM modulator is - $m(t)$; these two modulators have the same amplitude sensitivity. Show that the output $s(t)$ of the balanced modulator consists of a DSB-SC modulated signal.

Problem 8. [10] VSB Modulation

Consider the models shown in the following figure for generating the VSB signal and for coherently detecting it. Please derive the condition of the filter $H(f)$ to permit accurate recovery of the message signal.

Problem 9. [10] Consider the following figure where (a) is the carrier wave and (b) is the sinusoidal modulating signal. Please answer the following questions and justify your answers.
(1). [2] Which is the phase modulated signal?
(2). [2] Which is the frequency modulated signal?

(b)

(c)

(d)

Homann Mammann

For the message signal shown in the following figure

(3). [3] Please draw a diagram to illustrate the phase modulated wave.
(4). [3] Please draw a diagram to illustrate the frequency modulated wave.

Problem 10. [10] The sinusoidal modulating wave $m(t)=A_{m} \cos \left(2 \pi f_{m} t\right)$ is applied to a phase modulator with phase sensitivity k_{p}. The unmodulated carrier wave has frequency f_{c} and amplitude A_{c}.
(1). [5] Determine the spectrum of the resulting phase-modulated signal, assuming that the maximum phase deviation $\beta_{p}=k_{p} A_{m}$ does not exceed 0.3 radians.
(2). [5] Construct a phasor diagram for this modulated signal, and compare it with that of the corresponding narrow-band FM signal.

Properties of the Fourier Transform

Property	Mathematical Description
Linearity	$a g_{1}(t)+b g_{2}(t) \rightleftharpoons a G_{1}(f)+b G_{2}(f)$, where a and b are constants.
Time scaling	$g(a t) \rightleftharpoons \frac{1}{\|a\|} G\left(\frac{f}{a}\right)$, where a is a constant.
Duality	If $g(t) \rightleftharpoons G(f)$, then $G(t) \rightleftharpoons g(-f)$.
Time shifting	$g\left(t-t_{0}\right) \rightleftharpoons G(f) \exp \left(-j 2 \pi f t_{0}\right)$.
Frequency shifting	$\exp \left(j 2 \pi f_{c} t\right) g(t) \rightleftharpoons G\left(f-f_{c}\right)$.
Area under $g(t)$	$\int_{-\infty}^{\infty} g(t) d t=G(0)$.
Differentiation in the time domain	$\frac{d}{d t} g(t) \rightleftharpoons j 2 \pi f G(f)$.
Integration in the time domain	$\int_{-\infty}^{t} g(\tau) d \tau \rightleftharpoons \frac{1}{j 2 \pi f} G(f)+\frac{G(0)}{2} \delta(f)$.
Conjugate functions	If $g(t) \rightleftharpoons G(f)$, then $g^{*}(t) \rightleftharpoons G^{*}(-f)$.
Multiplication in the time domain	$g_{1}(t) g_{2}(t) \rightleftharpoons \int_{-\infty}^{\infty} G_{1}(\lambda) G(f-\lambda) d \lambda$.
Convolution in the time domain	$\int_{-\infty}^{\infty} g_{1}(\tau) g_{2}(t-\tau) d \tau \rightleftharpoons G_{1}(f) G_{2}(f)$.
Rayleigh’s energy theorem	$\int_{-\infty}^{\infty}\|g(t)\|^{2} d t=\int_{-\infty}^{\infty}\|G(f)\|^{2} d f$.

$$
\begin{array}{ll}
2 \sin \alpha \cdot \cos \beta=\sin (\alpha+\beta)+\sin (\alpha-\beta) & 2 \sin \alpha \cdot \sin \beta=\cos (\alpha-\beta)-\cos (\alpha+\beta) \\
2 \cos \alpha \cdot \sin \beta=\sin (\alpha+\beta)-\sin (\alpha-\beta) & 2 \cos \alpha \cdot \cos \beta=\cos (\alpha+\beta)+\cos (\alpha-\beta) \\
\sin \alpha+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} & \cos \alpha+\cos \beta=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\
\sin \alpha-\sin \beta=2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} & \cos \alpha-\cos \beta=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\
\sin (\mathrm{~A}+\mathrm{B})=\sin \mathrm{A} \cos \mathrm{~B}+\cos \mathrm{AsinB} & \cos (\mathrm{~A}+\mathrm{B})=\cos \mathrm{A} \cos \mathrm{~B}-\sin \mathrm{A} \sin \mathrm{~B} \\
\sin (\mathrm{~A}-\mathrm{B})=\sin \mathrm{A} \cos \mathrm{~B}-\cos \mathrm{A} \sin \mathrm{~B} & \cos (\mathrm{~A}-\mathrm{B})=\cos \mathrm{A} \cos \mathrm{~B}+\sin \mathrm{AsinB} \\
{\left[\sin \left(\frac{\mathrm{~A}}{2}\right)\right]^{2}=\frac{1-\cos A}{2}} & {\left[\cos \left(\frac{A}{2}\right)\right]^{2}=\frac{1+\cos A}{2}}
\end{array}
$$

$\operatorname{rect}\left(\frac{t}{T}\right) \Leftrightarrow T \operatorname{sinc}(f T)$	$\operatorname{sinc}(2 W t) \Leftrightarrow \frac{1}{2 W} \operatorname{rect}\left(\frac{f}{2 W}\right)$
$\exp \left(j 2 \pi f_{c} t\right) \Leftrightarrow \delta\left(f-f_{c}\right)$	$\operatorname{sgn}(t) \Leftrightarrow \frac{1}{j \pi f}$
$\cos \left(2 \pi f_{c} t\right) \Leftrightarrow \frac{1}{2}\left[\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right]$	$\sin \left(2 \pi f_{c} t\right) \Leftrightarrow \frac{1}{2 j}\left[\delta\left(f-f_{c}\right)-\delta\left(f+f_{c}\right)\right]$

