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Error Control Strategies
TR

o Error control for a one-way system must be accomplished using
forward error correction (FEC), that is, by employing error-
correcting codes that automatically correct errors detected at the
receiver.

o Error control for a two-way system can be accomplished using error
detection and retransmission, called automatic repeat request (ARQ).
This is also know as the backward error correction (BEC).

o Inan ARQ system, when errors are detected at the receiver, a request is sent
for the transmitter to repeat the message, and this continues until the message
IS received correctly.
o The major advantage of ARQ over FEC is that error detection
requires much simpler decoding equipment than does error

correction.




Error Control Strategies =

&ZIKI'BW\@% —
o ARQ is adaptive in the sense that information is retransmitted only
when errors occur.

o When the channel error rate is high, retransmissions must be sent too
frequently, and the system throughput, the rate at which newly
generated messages are correctly received, is lowered by ARQ.

o In general, wire-line communications (more reliable) adopts BEC
scheme, while wireless communications (relatively unreliable)
adopts FEC scheme.
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Error Detecting Codes

o Cyclic Redundancy Code (CRC Code) — also know as the
polynomial code.

o Polynomial codes are based upon treating bit strings as
representations of polynomials with coefficients of 0 and 1 only.

o For example, 110001 represents a six-term polynomial: x°>+x4+x°

o When the polynomial code method is employed, the sender and
receiver must agree upon a generator polynomial, G(x), in advance.

o To compute the checksum for some frame with m bits,
corresponding to the polynomial M(x), the frame must be longer
than the generator polynomial.



Error Detecting Codes
o The idea Is to append a checksum to the end of the frame in such a
way that the polynomial represented by the checksummed frame is
divisible by G(x).
o When the receiver gets the checksummed frame, it tries dividing it
by G(x). If there iIs a remainder, there has been a transmission error.

o The algorithm for computing the checksum is as follows:

1. Let r be the degree of G(x). Append r zero bits to the low-order end
of the frame, so it now contains m + r bits and corresponds to the
polynomial x"M (x).

2. Divide the bit string corresponding to G(x) into the bit string
corresponding to x" M (x) using modulo 2 division.

3. Subtract the remainder (which is always r or fewer bits) from the bit
string corresponding to x"M(x) using modulo 2 subtraction. The
result 1s the checksummed frame to be transmitted. Call its polyno-
mial 7'(x).
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Calculation of the polynomial code checksum

N e

& Ca””hunlca\w“‘)@ %
LAB:

(a) 1011 0110 =Quotient (ignored)
11001111100110 0000

@11001y

g0 le i)

@00000
010111
@11001y
011100

@11001

00101
Frame contents: 11100110 @0000 Oy
With appended zeros: 11100110 0000 0101 00
Generator polynomial: 11001 @110 01y

011 010
@11 001 *
00 0110
@0 0000
Transmitted frame: 111001100110 0 110 = Remainder
(FCS/CRCO)
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Calculation of the polynomial code checksum

(b)
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00 0000
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Remainder = 0: no errors
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11001/11100110 [1111]Error burst
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@1104]1

011100
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0101 11
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011 1
@11 001

00 1001
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Remainder # 0: error detected



Cyclic Redundancy Code (CRC)

o Examples of CRCs used In practice:

CRE -16 = Yia P ¥ 4
CRC -~ CCITT =X+ Y" £ X" 11
C‘RC 32 _— Xﬂ | /Y(Ef'l _|_ /\,21 ol /1(”] i‘ X]E T JYH 3 kfl“ _I_ k!H _+ JYH

g i XP4 Yot i X ]

o A 16-bit checksum catches all single and double errors, all
errors with an odd number of bits, all burst errors of length

16 or less, 99.997% of 17-bit error bursts, and 99.998% of
18-bit and longer bursts.
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Convoltuional Code

o Convolutional codes

o k = number of bits shifted into the encoder at one time
o k=1is usually used!!

o N =number of encoder output bits corresponding to the k
Information bits

o I =Kk/n = code rate
o K = constraint length, encoder memory

o Each encoded bit is a function of the present input bits and
their past ones.

14



Generator Sequence

1) _
0

»
L

o

1 g 1) _

> rl

S

> N
1N oY

=0, gi? =1, and g’ =1.

Generator Sequence: g®=(101 1)

(2) _
0

o

> r2

R N
(RE N

=1 g(2)

(2) _
P

=1, gi? =0, anc

Generator Sequence: g@=(11101)
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Convolutional Codes
An Example - (rate=1/2 with K=2)

G, (X)=1+x?

SV

X G,(X)=1+x1+x?

>
J
4
) 4
; I
N

Present Next Output 0(11)
0 00 00 00 {001
1 00 10 11 <Ei£j
0 01 00 11 \\\\
1 | o1 10 00 01Oy~
0 10 01 01 \
1 10 11 10
0 11 01 10 1(01)
1 11 11 01

State Diagram
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Trellis termination: K tail bits with value 0 are usually added to the end of the code.

17



Encoding Process

Input: 1 O 1 1 1 O O
Output 11

z

*‘(\\
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Viterbi Decoding Algorithm

o Maximum Likelihood (ML) decoding rule

ML
received sequence r detected sequence d

o Viterbi Decoding Algorithm

o An efficient search algorithm
o Performing ML decoding rule.
o Reducing the computational complexity.
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Viterbi Decoding Algorithm

o Basic concept

o

o

Generate the code trellis at the decoder

The decoder penetrates through the code trellis level by level in
search for the transmitted code sequence

At each level of the trellis, the decoder computes and compares
the metrics of all the partial paths entering a node

The decoder stores the partial path with the larger metric and
eliminates all the other partial paths. The stored partial path is
called the survivor.

20



Viterbi Decoding Algorithm

Output: 11 01 OO 10 01 10 11
Receive: 11
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Viterbi Decoding Algorithm

Output: 11 01 00 10 01 10 11
Receive: 11 11 00
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Output: 11
Receive: 11



Viterbi Decoding Algorithm

Output: 11 01 OO 10 01 10 11
Receive: 11




Output: 11
Receive: 11



Viterbi Decoding Algorithm

Output: 11
Receive: 11




Viterbi Decoding Algorithm

Output: 11
Receive: 11




Decision:11
Receive: 11

Output: 10111(00)
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Linear Block Code

o Consider then an (n, k) linear block code
o K : bits of message sequence.

o N :code bits.
o N-K bits are referred to as parity check bits of the code.

o Definition: A block code of length n and 2% code word is
called a linear (n, k) code iff its 2¢ code words form a k-

dimensional subspace of the vector space.

o In fact, a binary block code is linear iff the module-2
sum of two code word Is also a code word

o 0 must be code word.

30



Generator Matrix

o Generator Matrix

o Since an (n, k) linear code C is a k-dimensional subspace of the
vector space V,, of all the binary n-tuple, it is possible to find k
linearly independent code word, g,, 97 ..., g1 INC

V=Ud,+Uu9g, +---+U_09,,

where u;=0or1for0<i<k.

o Let us arrange these k linearly independent code words as the
rows of a k x n matrix as follows:

O] Yoo Qo1 go,n—l
g, O10 O, T gl,n—l

ey _gk—l,O Ogan gk—l,n—l_
where g; = (Jio» Jizs---1Jin.g) for 0 <i<k.
31



Generator Matrix

o Ifu=(uyUy...,U.,) Is the message to be encoded, the
corresponding code word can be given as follows:

9o

9,
V=U°G=(UO,U1,---,UK_1)‘ : =Uygo tU 9, +---+U,_,9, 4

e
o Note that any k linearly independent code words of an (n,
k) linear code can be used to form a generator matrix for

the code, 1.e. generator matrix is not unique.
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Systematic Code

o A desirable property for a linear block code is the

systematic structure of the code words as shown in the
following figure.

o Where a code word is divided into two parts
o The message part consists of k information digits
o The redundant checking part consists of n — k parity-check digits

o A linear block code with this structure is referred to as a
linear systematic block code

Redundant checking part Message part

A n - k digits e k digits —

Systematic format of a code word
33



Generator Matrix O
GRS

o A linear systematic (n, k) code is completely specified by a
kK x n matrix G of the following form :

F— P matrix 4.‘47 k x kidentity matrix 4.‘

Jo Poo Por - - + Ponxas 1 00 . . . O
0, P1o Py - -+« Prpxa o10 . . .0
op P2 Py -+« Ponxa oo1. . .0
G=| . |= (*)
Ok | [ Prao Pear - - Pranxa 0 00 0 OO 1_

where p; =0 or1

34



Parity Check Matrix 7

For any k x n matrix G with k linearly independent rows, there exists
an (n-k) xn matrix H with n-k linearly independent rows such that
any vector in the row space of G is orthogonal to the rows of H and
any vector that is orthogonal to the rows of H is in the row space of
G.

An n-tuple v is a code word in the code generated by G if and only if
VeHT =0
This matrix H is called a parity-check matrix of the code

The 2"k linear combinations of the rows of matrix H form an (n, n -
k) linear code C,

This code is the null space of the (n, k) linear code C generated by
matrix G

C, is called the dual code of C

35



Parity Check Matrix

o
3
w‘;‘

o |f the generator matrix of an (n,k) linear code is in the
systematic form of (*) in page 34, the parity-check matrix

may take the following form :

H

z[j

o P
100 . . . Pog
010 . . . 0 p,
0 0 1 Py,
0 0 0 1 Pypsat

36
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Parity Check Matrix

o Leth; be the j,, row of H

g;-h;=p;+p; =0

forO<i<kand0< j<n-Kk

o Thisimpliesthat Ge H' =0

37
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Sraps T
The generator matrix G is uses in the encoding operation at the
transmitter. On other hand, the parity-check matrix H is used in the
decoding operation at the receiver.

Let .
r=c+e (10.78)

r denote the 1-by-n received vector that results from sending the
code vector ¢ over a noisy channel.

e iIs the error vector or error pattern.
e=r+c=(6e,e,....6,,)

1 if an error has occurred in the ith location (1, #¢,)
0 otherwise (r=c)

38
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The receiver has to decode the code vector ¢ from the received r.

The algorithm commonly used to perform this decoding operation
stars with the computation of a 1-by-(n-k) vector the error-
syndrome vector or simply the syndrome.

Given a 1-by-n received vector r, the syndrome is defined as
s=rH"=(s,,8,,...,5,44) (10.80)

s=0 if and only if r is a code word and receiver accepts r as the
transmitted code word.

s#0 if and only if r is not a code word and presence of errors has
been detected.

When the error pattern e iIs identical to a nonzero code word (i.e., r
contain errors but s=r-H™=0), error patterns of this kind are called
undetectable error patterns.

o There are 2%-1 undetectablggerror patterns.




Synd rome ff-%g

o The syndrome has the following important properties.

o |Property 1:

o The syndrome depends only on the error pattern, and not on the
transmitted codeword.

Proof : Using Eqs.(10.78) and (10.80) and then Eqg.(10.77) to
obtain

=(c+e)H’

S

=cH' +eH’
cH' =0 g: T
=(Sp,S11-++»Sni1)
o Hence, the parity-check matrix H of a code permits us to

compute the syndrome s, which depends only upon the error
pattern e.

(10.81)

40



Syndrome decoding - I -

o |Property 2 :
o All error patterns that differ by a code word have the same syndrome.

o Proof:

o For k message bits, there are 2« distinct code vectors denoted
as c;, i=1, 2, ..., 2% For any error pattern e, we define the 2
distinct vectors e; as

e, =e+c, i=1,..,2" (10.82)

o Inany event, multiplying both sides of Eq. (10.82) by matrix
HT, we get
e,H =eH' +c,H'

=eH'
which is independent of index I.

(10.83)

41



Syndrome decoding - I //“%

e
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%
The set of vectors {e;, i=1, 2, ..., 2¥} so defined is called a coé@
the code. In other words, a code set has exactly 2k elements that
differ at most by a code vector.

Because there are 2" possible received vectors, and a coset has 2K

different elements, so an (n,k) linear block code has 2" possible
cosets.

From Eqg. (10.83), we may state that each coset of the code is
characterized by a unigue syndrome.

Based on Egs. (10.69), (10.75), and (10.81) we obtain the (n-k)
elements of the syndrome s a?[H =[|n_k\pT]

S =€ + €« Poo T € k2P0t +€ 1 Py1a

S, =€ +€, «Por 7€, k1 Py T +€ 4 Py s

(10.84)

Sn—k = en—k—l + en—k pO,n—k+l T 42 en—l pk—l,n—k
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Syndrome decoding - I 7=

Sraps

The syndrome digits are linear combinations of the error digits.
The syndrome digits can be used for error detection.

Because the n — k linear equations of (10.84) do not have a unigue
solution but have 2% solutions.

There are 2% error pattern that result in the same syndrome, and the
true error pattern e is one of them.

The decoder has to determine the true error vector from a set of 2%
candidates.

Knowledge of the syndrome s reduce the search for the true error
pattern e from 2" to 2n,

In particular, the decoder has the task of making the best selection
from the coset corresponding to s.

43
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Minimum Distance Consideration (la

Let code vectors ¢, and ¢, have the same number of elements.

The Hamming distance between c, and c,, denoted d (c,,c2), Is
defined as the number of places where they differ.

o For example, the Hamming distance between ¢,=(1001011) and
c,=(0100011) is 3.
The Hamming weight (or simply weight) of a code vector c, denote
by w(c), is defined as the number of nonzero elements of c.
o For example, the Hamming weight of ¢c=(1001011) is 3.

From the definition of hamming distance and definition of module-2
addition that the Hamming weight between two n-tuple, ¢, and ¢, Is
equal to the Hamming weight of the sum of ¢, and c,, that is

d(c,,c,)=w(c,+¢,)

44
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Minimum Distance Consideration %//“%
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The minimum distance d_;, of a linear block code is defined as the smallest
Hamming distance between any pair of code vectors in the code.

Given a block code C ,the minimum distance of C, denoted d_ .,
IS defined as d

-n =Mmin{d(c,.c,):c,,c, €Cc =,

If C is a linear block, the sum of two vectors is also a code vector.

From d (c,,c,)=w (c,*C,), the Hamming distance between two code vectors
In C is equal to the Hamming weight of third code vector in C

dpin =Min{w(c, +¢,):¢;,C, €C,C, #C,
=min{w(x):xeC,x =0}

w_..is called the minimum weight of the linear code C

45
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o The minimum distance d ;. Is related to the parity-check matrix H of the
code.

o Let the matrix H be expressed in terms of its columns as follows:

H= :hl,hz,...,hn]
o From Eq.(10.77) we get (10.85)
I
hT
=[c ¢, ...c]| 7 |=ah +chy +o+chy =0
h.T

The vector ¢ must have 1s in such positions that the correspond rows of
HT sum to the zero vector 0.

o Because d.;.= W, the smallest Hamming weight equals the minimum
distance of the code. Hence, the minimum distance of a linear block code
is defined by the minimum number of rows of the matrix H' whose sum is

equal to the zero vector. 46



Minimum Distance Consideration (e~

The minimum distance, d_,, determines the error-correcting
capability of the code.

If a code vector c; Is transmitted and the received vector Is r=c;+e ,

we require that the decoder output €=c;, whenever w(% t.
error bits <t

The best strategy for decoder then is to pick the code vector d(c;,r)
closest to the received vector r, that is, the one for which

IS smallest.

With such a strategy, the decoder will be able to detect and correct
all error patterns of w(e)<t, we will show thatd_. > 2t+1.

min

47



Minimum Distance Consideration 7
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o We construct two spheres, each of radius t, around the points that
represent ¢; and c;.

o Let these two spheres are disjoint, d(c;,c;) > 2t+1, as depicted In
Figure 10.23a.

o If the code vector c; is transmitted, and d(c;,r) <t, it is clear that the decoder
will pick c; as it is the code vector closest to the received vector r.

(a)

Figure 10.23

48
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o Let these two spheres are intersect, d(c;,r) < 2t, as depicted in Figure
10.23Db.

o If then the code vector c, Is transmitted, there exists a received vector r, and
d(c;,r) < 2t. But now, r is as close to ¢; as it is to ¢;, so there is now the
possibility of the decoder picking the vector c;, which is wrong.

Figure 10.23
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Minimum Distance Consideration é//;;;’f;

o An (n,K) linear block code has the power to correct all error patterns
of weight t or less if and only if

d(c;.c;)=2t+1 forallc, andc,

o By definition, the smallest distance between any pair of code vectors
IS the minimum distance of the code, d.;..

o S0, an (n,k) linear block code of minimum distance d_;, can correct
up to t errors if, and only If,

(< b(dmm 1) J (10.86)
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We are now ready to describe a syndrome-based decoding scheme
for linear block code.

Let C,,C,,...,Cdenote the 2% code vectors of an (n,k) linear block
code.

I denote the receiver vector, which may have one of 2" possible
values.

The recelver has the task of partitioning the 2" possible received
vector into 2% disjoint subset D,, D,,...,D,, D; is the ith subset
correspond to code vector c; for 1< i< 2k,

For decoding to be correct, r must be in the subset that belongs to c;.
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Syndrome Decoding - II o

PSU ®

o

~
o
w
1.

o The 2 subsets described herein constitute a standard array of the linear
block code.

o To construct it, we may exploit the linear structure of the code by
proceeding as follows:

1. The 2% code vectors are placed in a row with the all-zero code vector
C, as the left-most element.

2. An error pattern e, Is picked and placed under c,, and a second row is
formed by adding e, to each of the remaining code vectors in the first
row; it Is important that the error pattern chosen as the first element in
a row not have previously appeared in the stand array. (Note that
e,=0).

3. Step 2 is repeated until all the possible error pattern have been

accounted for.
52



Syndrome Decoding - II

o Figure 10.24 illustrates the structure of the stand array.

o The 2"k rows of the array represent the cosets of the code, and their
first elements e,,...,e .. are called coset leaders.

c =0 () 3 C Coi
() C) T € C3; + e C;, T € Crk T €2
¢ + e; c;+e; -+ cites - Cyxte coset
coset leader e c; t+ ¢ c; te .y ¢ + e — Cyt + €
ezn k Cg + ezu k C3 + ezn k C! + ezn k e CEA + ejn k
DI Dzk

Figure 10.24 Stand array for an (n,k) block code
53



when the most likely error are chosen as the coset leader.

o In the case of a binary symmetric channel, the smaller the Hamming
weight of an error pattern the more likely it Is to occur.

=» The standard array should be constructed with each coset leader
having the minimum Hamming weight in its coset.

o Syndrome Decoding
1. For the received vector r, compute the syndrome s=rH".

2. Within the coset characterized by the syndrome s, identify the coset leader
(i.e., the error pattern with the largest probability of occurrence); call it e,

3. Compute the code vector
P C=r+e, (10.87)

as the decoded version of the received vector r.

54
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