
Wireless Information Transmission System Lab.
Institute of Communications Engineering
National Sun Yat-sen University

Error Control Coding

2

Outline

◊ Introduction

◊ Error Detection Code - Cyclic Redundancy Code (CRC)

◊ Convolutional Code

◊ Linear Block Code

Wireless Information Transmission System Lab.
Institute of Communications Engineering
National Sun Yat-sen University

Introduction

4

Error Control Strategies

◊ Error control for a one-way system must be accomplished using
forward error correction (FEC), that is, by employing error-
correcting codes that automatically correct errors detected at the
receiver.

◊ Error control for a two-way system can be accomplished using error
detection and retransmission, called automatic repeat request (ARQ).
This is also know as the backward error correction (BEC).
◊ In an ARQ system, when errors are detected at the receiver, a request is sent

for the transmitter to repeat the message, and this continues until the message
is received correctly.

◊ The major advantage of ARQ over FEC is that error detection
requires much simpler decoding equipment than does error
correction.

5

Error Control Strategies

◊ ARQ is adaptive in the sense that information is retransmitted only
when errors occur.

◊ When the channel error rate is high, retransmissions must be sent too
frequently, and the system throughput, the rate at which newly
generated messages are correctly received, is lowered by ARQ.

◊ In general, wire-line communications (more reliable) adopts BEC
scheme, while wireless communications (relatively unreliable)
adopts FEC scheme.

Wireless Information Transmission System Lab.
Institute of Communications Engineering
National Sun Yat-sen University

Error Detection Code
Cyclic Redundancy Code (CRC)

7

Error Detecting Codes

◊ Cyclic Redundancy Code (CRC Code) – also know as the
polynomial code.

◊ Polynomial codes are based upon treating bit strings as
representations of polynomials with coefficients of 0 and 1 only.

◊ For example, 110001 represents a six-term polynomial: x5+x4+x0

◊ When the polynomial code method is employed, the sender and
receiver must agree upon a generator polynomial, G(x), in advance.

◊ To compute the checksum for some frame with m bits,
corresponding to the polynomial M(x), the frame must be longer
than the generator polynomial.

8

Error Detecting Codes

◊ The idea is to append a checksum to the end of the frame in such a
way that the polynomial represented by the checksummed frame is
divisible by G(x).

◊ When the receiver gets the checksummed frame, it tries dividing it
by G(x). If there is a remainder, there has been a transmission error.

◊ The algorithm for computing the checksum is as follows:

9

Calculation of the polynomial code checksum

10

Calculation of the polynomial code checksum

11

◊ Examples of CRCs used in practice:

◊ A 16-bit checksum catches all single and double errors, all
errors with an odd number of bits, all burst errors of length
16 or less, 99.997% of 17-bit error bursts, and 99.998% of
18-bit and longer bursts.

Cyclic Redundancy Code (CRC)

Wireless Information Transmission System Lab.
Institute of Communications Engineering
National Sun Yat-sen University

Convolutional Code

13

Structure of Convolutional Encoder

1 2 k 1 2 k 1 2 k

1 2 K

+ + + +

k bits

1 2 n-1 n

Output

14

Convoltuional Code

◊ Convolutional codes
◊ k = number of bits shifted into the encoder at one time

◊ k=1 is usually used!!

◊ n = number of encoder output bits corresponding to the k
information bits

◊ r = k/n = code rate
◊ K = constraint length, encoder memory

◊ Each encoded bit is a function of the present input bits and

their past ones.

15

Generator Sequence

◊

◊

.1 and ,1 ,0 ,1)1(
3

)1(
2

)1(
1

)1(
0 ==== gggg

Generator Sequence: g(1)=(1 0 1 1)

r0 r2 r1
u v

r0 r2 r1
u v r3

.1 and 0, ,1 ,1 ,1)2(
4

)2(
3

)2(
2

)2(
1

)2(
0 ===== ggggg

Generator Sequence: g(2)=(1 1 1 0 1)

16

Convolutional Codes
An Example – (rate=1/2 with K=2)

00 000

Present Next Output

00

1 00 10 11

010

1

0

1

0

1

01

00

10

10 01

10 11

11

11

01

11

11

00

01

10

10

01

x1 x2

G1(x)=1+x2

G2(x)=1+x1+x2

00

01 10

11

1(11)

0(01)

1(00)

1(01)

0(00)

0(11)

0(10) 1(10)

State Diagram

17

Trellis Diagram Representation

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

00 0(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00) 0(00) 0(00) 0(00)

Trellis termination: K tail bits with value 0 are usually added to the end of the code.

18

Encoding Process

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

00 0(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00) 0(00) 0(00) 0(00)

Input: 1 0 1 1 1 0 0
Output: 11 01 00 10 01 10 11

19

Viterbi Decoding Algorithm

◊ Maximum Likelihood (ML) decoding rule

◊ Viterbi Decoding Algorithm
◊ An efficient search algorithm

◊ Performing ML decoding rule.
◊ Reducing the computational complexity.

received sequence r
ML detected sequence d

min(d,r) !!

20

Viterbi Decoding Algorithm

◊ Basic concept
◊ Generate the code trellis at the decoder
◊ The decoder penetrates through the code trellis level by level in

search for the transmitted code sequence
◊ At each level of the trellis, the decoder computes and compares

the metrics of all the partial paths entering a node
◊ The decoder stores the partial path with the larger metric and

eliminates all the other partial paths. The stored partial path is
called the survivor.

21

Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

00 0(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00) 0(00) 0(00) 0(00)

Output: 11 01 00 10 01 10 11
Receive: 11 11 00 10 01 11 11

2

0

22

Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

00 0(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00) 0(00) 0(00) 0(00)

Output: 11 01 00 10 01 10 11
Receive: 11 11 00 10 01 11 11

2

0

4

2

1

1

23

Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

00 0(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00) 0(00) 0(00) 0(00)

Output: 11 01 00 10 01 10 11
Receive: 11 11 00 10 01 11 11

2

0

4

2

1

1

3

2

1

2

24

Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

00 0(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00) 0(00) 0(00) 0(00)

Output: 11 01 00 10 01 10 11
Receive: 11 11 00 10 01 11 11

2

0

4

2

1

1

3

2

1

2

3

2

3

1

25

Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

00 0(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00) 0(00) 0(00) 0(00)

Output: 11 01 00 10 01 10 11
Receive: 11 11 00 10 01 11 11

2

0

4

2

1

1

3

2

1

2

3

2

3

1

3

3

3

1

26

Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

00 0(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00) 0(00) 0(00) 0(00)

Output: 11 01 00 10 01 10 11
Receive: 11 11 00 10 01 11 11

2

0

4

2

1

1

3

2

1

2

3

2

3

1

3

3

3

1

3

2

27

Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

00 0(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00) 0(00) 0(00) 0(00)

Output: 11 01 00 10 01 10 11
Receive: 11 11 00 10 01 11 11

2

0

4

2

1

1

3

2

1

2

3

2

3

1

3

3

3

1

3

2

2

28

Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

00 0(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00) 0(00) 0(00) 0(00)

Decision:11 01 00 10 01 10 11
Receive: 11 11 00 10 01 11 11

2

0

4

2

1

1

3

2

1

2

3

2

3

1

3

3

3

1

3

2

2

Output: 10111(00)

Wireless Information Transmission System Lab.
Institute of Communications Engineering
National Sun Yat-sen University

Linear Block Code

30

Linear Block Code

◊ Consider then an (n, k) linear block code
◊ k : bits of message sequence.
◊ n : code bits.
◊ n-k bits are referred to as parity check bits of the code.

◊ Definition: A block code of length n and 2k code word is

called a linear (n, k) code iff its 2k code words form a k-
dimensional subspace of the vector space.

◊ In fact, a binary block code is linear iff the module-2
sum of two code word is also a code word
◊ 0 must be code word.

31

◊ Generator Matrix
◊ Since an (n, k) linear code C is a k-dimensional subspace of the

vector space Vn of all the binary n-tuple, it is possible to find k
linearly independent code word, g0 , g1 ,…, gk-1 in C

 where ui = 0 or 1 for 0 ≤ i < k.
◊ Let us arrange these k linearly independent code words as the

rows of a k × n matrix as follows:

 where gi = (gi0, gi1,…,gi,n-1) for 0 ≤ i < k.

0 0 1 1 1 1k ku u u − −= + + ⋅⋅⋅ +v g g g

00 01 0, 10

10 11 1, 11

1,0 1,1 1, 11

n

n

k k k nk

g g g
g g g

g g g

−

−

− − − −−

  
  
  = =
  
  

   

g
g

G

g





   




Generator Matrix

32

◊ If u = (u0,u1,…,uk-1) is the message to be encoded, the
corresponding code word can be given as follows:

◊ Note that any k linearly independent code words of an (n,
k) linear code can be used to form a generator matrix for
the code, i.e. generator matrix is not unique.

0

1
0 1 1 0 0 1 1 1 1

1

(, ,...,)k k k

k

u u u u u u− − −

−

 
 
 = ⋅ = ⋅ = + + ⋅⋅⋅ +
 
 
 

g
g

v u G g g g

g


Generator Matrix

33

◊ A desirable property for a linear block code is the
systematic structure of the code words as shown in the
following figure.
◊ where a code word is divided into two parts

◊ The message part consists of k information digits
◊ The redundant checking part consists of n − k parity-check digits

◊ A linear block code with this structure is referred to as a
linear systematic block code

 Systematic format of a code word

Redundant checking part Message part

n - k digits k digits

Systematic Code

34

◊ A linear systematic (n, k) code is completely specified by a
k × n matrix G of the following form :

where pij = 0 or 1

(*)

1000000|...
|
|
|

0...100|...
0...010|...
0...001|...

.

.

.

1 ,11,10,1

1,22120

1,11110

1,00100

1

2

1

0





























=





























=

−−−−−

−−

−−

−−

− knkkk

kn

kn

kn

k ppp

ppp
ppp
ppp

g

g
g
g

G

P matrix k × k identity matrix

Generator Matrix

35

◊ For any k × n matrix G with k linearly independent rows, there exists
an (n-k) ×n matrix H with n-k linearly independent rows such that
any vector in the row space of G is orthogonal to the rows of H and
any vector that is orthogonal to the rows of H is in the row space of
G.

◊ An n-tuple v is a code word in the code generated by G if and only if
v • HT = 0

◊ This matrix H is called a parity-check matrix of the code
◊ The 2n-k linear combinations of the rows of matrix H form an (n, n –

k) linear code Cd

◊ This code is the null space of the (n, k) linear code C generated by
matrix G

◊ Cd is called the dual code of C

Parity Check Matrix

36

◊ If the generator matrix of an (n,k) linear code is in the
systematic form of (*) in page 34, the parity-check matrix
may take the following form :

T
n k

k- ,

k - ,

k - ,

,n-k - ,n-k - k - ,n-k -

. . . p p . . . p

. . . p p . . . p

. . . p p . . . p
.
.
.

. . . p p . . . p

− =  
 
 
 
 
 

=  
 
 
 
 
 

H I P

00 10 1 0

01 11 11

02 12 1 2

0 1 1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Parity Check Matrix

37

◊ Let hj be the jth row of H

 for 0 ≤ i < k and 0 ≤ j < n – k

◊ This implies that G • HT = 0

0=+=⋅ ijijji pphg

Parity Check Matrix

38

◊ The generator matrix G is uses in the encoding operation at the
transmitter. On other hand, the parity-check matrix H is used in the
decoding operation at the receiver.

◊ Let ,

◊ r denote the 1-by-n received vector that results from sending the
code vector c over a noisy channel.

◊ e is the error vector or error pattern.

()10.78= +r c e

()
()

 1 if an error has occurred in the th location

 0 otherwise

i i
i

i i

r ci
e

r c
≠

=  =
0,1, , 1i n= −

()0 1 1, , , ne e e −+ =e = r c 

()10.79

Syndrome

39

◊ The receiver has to decode the code vector c from the received r.
◊ The algorithm commonly used to perform this decoding operation

stars with the computation of a 1-by-(n-k) vector the error-
syndrome vector or simply the syndrome.

◊ Given a 1-by-n received vector r, the syndrome is defined as

◊ s=0 if and only if r is a code word and receiver accepts r as the
transmitted code word.

◊ s≠0 if and only if r is not a code word and presence of errors has
been detected.

◊ When the error pattern e is identical to a nonzero code word (i.e., r
contain errors but s=r∙HT=0), error patterns of this kind are called
undetectable error patterns.
◊ There are 2k-1 undetectable error patterns.

()0 1 1= , , ,T
n ks s s − −=s rH  ()10.80

Syndrome

40

◊ The syndrome has the following important properties.
◊ Property 1 :

◊ The syndrome depends only on the error pattern, and not on the
transmitted codeword.

 Proof : Using Eqs.(10.78) and (10.80) and then Eq.(10.77) to
obtain

◊ Hence, the parity-check matrix H of a code permits us to
compute the syndrome s, which depends only upon the error
pattern e.

()

()0 1 1, , ,

T

T T

T

n ks s s − −

= +

= +

=

=

s c e H

cH eH
eH



()10.81

T =cH 0

Syndrome

41

◊ Property 2 :
◊ All error patterns that differ by a code word have the same syndrome.

◊ Proof:
◊ For k message bits, there are 2k distinct code vectors denoted

as ci, i=1, 2, …, 2k. For any error pattern e, we define the 2k
distinct vectors ei as

◊ In any event, multiplying both sides of Eq. (10.82) by matrix
HT, we get

 which is independent of index i.

, 1, ,2k
i i i= + =e e c 

()10.82

T T T
i i

T

= +

=

e H eH c H

eH ()10.83

Syndrome decoding - I

42

◊ The set of vectors {ei, i=1, 2, …, 2k} so defined is called a coset of
the code. In other words, a code set has exactly 2k elements that
differ at most by a code vector.

◊ Because there are 2n possible received vectors, and a coset has 2k
different elements, so an (n,k) linear block code has 2n-k possible
cosets.

◊ From Eq. (10.83), we may state that each coset of the code is
characterized by a unique syndrome.

◊ Based on Eqs. (10.69), (10.75), and (10.81) we obtain the (n-k)
elements of the syndrome s as: T

n k− =  H I P T=s eH

1 0 00 1 10 1 1,1

2 1 01 1 11 1 1,2

1 0, 1 1 1,

n k n k n k

n k n k n k

n k n k n k n k n k n k

s e e p e p e p
s e e p e p e p

s e e p e p

− − + − −

− − + − −

− − − − − + − − −

= + + + +

= + + + +

= + +









()10.84

Syndrome decoding - I

43

◊ The syndrome digits are linear combinations of the error digits.
◊ The syndrome digits can be used for error detection.
◊ Because the n – k linear equations of (10.84) do not have a unique

solution but have 2k solutions.
◊ There are 2k error pattern that result in the same syndrome, and the

true error pattern e is one of them.
◊ The decoder has to determine the true error vector from a set of 2k

candidates.
◊ Knowledge of the syndrome s reduce the search for the true error

pattern e from 2n to 2n-k.
◊ In particular, the decoder has the task of making the best selection

from the coset corresponding to s.

Syndrome decoding - I

44

Minimum Distance Consideration

◊ Let code vectors c1 and c2 have the same number of elements.
◊ The Hamming distance between c1 and c2, denoted d (c1,c2), is

defined as the number of places where they differ.
◊ For example, the Hamming distance between c1=(1001011) and

c2=(0100011) is 3.
◊ The Hamming weight (or simply weight) of a code vector c, denote

by w(c), is defined as the number of nonzero elements of c.
◊ For example, the Hamming weight of c=(1001011) is 3.

◊ From the definition of hamming distance and definition of module-2
addition that the Hamming weight between two n-tuple, c1 and c2, is
equal to the Hamming weight of the sum of c1 and c2, that is
 () ()1 2 1 2,d w= +c c c c

45

◊ The minimum distance dmin of a linear block code is defined as the smallest
Hamming distance between any pair of code vectors in the code.

◊ Given a block code C ,the minimum distance of C, denoted dmin,
 is defined as

◊ If C is a linear block, the sum of two vectors is also a code vector.
◊ From d (c1,c2)=w (c1+c2), the Hamming distance between two code vectors

in C is equal to the Hamming weight of third code vector in C

(){ }min 1 2 1 2 1 2min , : , ,d d C= ∈ ≠c c c c c c

(){ }
(){ }

min 1 2 1 2 1 2

min

min

min : , ,

min : ,

 is called the minimum weight of the linear code

d w C

w C

w
w C

= + ∈ ≠

= ∈ ≠

=

c c c c c c

x x x 0

Minimum Distance Consideration

46

◊ The minimum distance dmin is related to the parity-check matrix H of the
code.

◊ Let the matrix H be expressed in terms of its columns as follows:

◊ From Eq.(10.77) we get

The vector c must have 1s in such positions that the correspond rows of

HT sum to the zero vector 0.
◊ Because dmin= wmin, the smallest Hamming weight equals the minimum

distance of the code. Hence, the minimum distance of a linear block code
is defined by the minimum number of rows of the matrix whose sum is
equal to the zero vector.

[]1 2, , , n=H h h h ()10.85

TH

[]
1

2
1 2 1 1 2 2 0

T

T
T T T T

n n n

T
n

h
h

c c c c h c h c h

h

 
 
 = = + + + =
 
 
  

cH  



Minimum Distance Consideration

47

◊ The minimum distance, dmin, determines the error-correcting
capability of the code.

◊ If a code vector ci is transmitted and the received vector is r=ci+e ,
 we require that the decoder output ĉ=ci, whenever w(e)≤ t.

◊ The best strategy for decoder then is to pick the code vector d(ci,r)

closest to the received vector r, that is, the one for which
 is smallest.

◊ With such a strategy, the decoder will be able to detect and correct

all error patterns of w(e)≤ t, we will show that dmin ≥ 2t+1.

error bits t≤

Minimum Distance Consideration

48

◊ We construct two spheres, each of radius t, around the points that
represent ci and cj.

◊ Let these two spheres are disjoint, d(ci,cj) ≥ 2t+1, as depicted in
Figure 10.23a.
◊ If the code vector ci is transmitted, and d(ci,r) ≤ t, it is clear that the decoder

will pick ci as it is the code vector closest to the received vector r.

Figure 10.23

Minimum Distance Consideration

49

◊ Let these two spheres are intersect, d(ci,r) ≤ 2t, as depicted in Figure
10.23b.
◊ If then the code vector is transmitted, there exists a received vector r, and

d(ci,r) ≤ 2t. But now, r is as close to ci as it is to cj, so there is now the
possibility of the decoder picking the vector cj, which is wrong.

Figure 10.23

ic

Minimum Distance Consideration

50

◊ An (n,k) linear block code has the power to correct all error patterns
of weight t or less if and only if

◊ By definition, the smallest distance between any pair of code vectors
is the minimum distance of the code, dmin.

◊ So, an (n,k) linear block code of minimum distance dmin can correct
up to t errors if, and only if,

(), 2 1 for all and i j i jd t≥ +c c c c

()min
1 1
2

t d ≤ −  
()10.86

Minimum Distance Consideration

51

Syndrome Decoding - II

 We are now ready to describe a syndrome-based decoding scheme
for linear block code.

◊ Let denote the 2k code vectors of an (n,k) linear block
code.

◊ r denote the receiver vector, which may have one of 2n possible
values.

◊ The receiver has the task of partitioning the 2n possible received
vector into 2k disjoint subset , Di is the ith subset
correspond to code vector ci for 1≤ i≤ 2k.

◊ For decoding to be correct, r must be in the subset that belongs to ci.

1 2 2
, , , kc c c

1 2 2
, , , kD D D

52

◊ The 2k subsets described herein constitute a standard array of the linear
block code.

◊ To construct it, we may exploit the linear structure of the code by
proceeding as follows:

1. The 2k code vectors are placed in a row with the all-zero code vector
c1 as the left-most element.

2. An error pattern e2 is picked and placed under c1, and a second row is
formed by adding e2 to each of the remaining code vectors in the first
row; it is important that the error pattern chosen as the first element in
a row not have previously appeared in the stand array. (Note that
e1=0).

3. Step 2 is repeated until all the possible error pattern have been
accounted for.

Syndrome Decoding - II

53

◊ Figure 10.24 illustrates the structure of the stand array.

◊ The 2n-k rows of the array represent the cosets of the code, and their
first elements are called coset leaders. 2 2

, , n k−e e

()Figure 10.24 Stand array for an , block coden k

Syndrome Decoding - II

54

◊ For a given channel, the probability of decoding error is minimized
when the most likely error are chosen as the coset leader.

◊ In the case of a binary symmetric channel, the smaller the Hamming
weight of an error pattern the more likely it is to occur.

 The standard array should be constructed with each coset leader
having the minimum Hamming weight in its coset.

◊ Syndrome Decoding
1. For the received vector r, compute the syndrome s=rHT.
2. Within the coset characterized by the syndrome s, identify the coset leader

(i.e., the error pattern with the largest probability of occurrence); call it e0.
3. Compute the code vector

 as the decoded version of the received vector r.

Syndrome Decoding - II

0= +c r e ()10.87

	Error Control Coding
	Outline
	Introduction
	Error Control Strategies
	Error Control Strategies
	Error Detection Code�Cyclic Redundancy Code (CRC)
	Error Detecting Codes
	Error Detecting Codes
	Calculation of the polynomial code checksum
	Calculation of the polynomial code checksum
	Cyclic Redundancy Code (CRC)
	Convolutional Code
	Structure of Convolutional Encoder
	Convoltuional Code
	Generator Sequence
	Convolutional Codes�An Example – (rate=1/2 with K=2)
	Trellis Diagram Representation
	Encoding Process
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm
	Linear Block Code
	Linear Block Code
	Generator Matrix
	Generator Matrix
	Systematic Code
	Generator Matrix
	Parity Check Matrix
	Parity Check Matrix
	Parity Check Matrix
	Syndrome
	Syndrome
	Syndrome
	Syndrome decoding - I
	Syndrome decoding - I
	Syndrome decoding - I
	Minimum Distance Consideration
	Minimum Distance Consideration
	Minimum Distance Consideration
	Minimum Distance Consideration
	Minimum Distance Consideration
	Minimum Distance Consideration
	Minimum Distance Consideration
	Syndrome Decoding - II
	Syndrome Decoding - II
	Syndrome Decoding - II
	Syndrome Decoding - II

