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Error Control Strategies 

◊ Error control for a one-way system must be accomplished using 
forward error correction (FEC), that is, by employing error-
correcting codes that automatically correct errors detected at the 
receiver. 

◊ Error control for a two-way system can be accomplished using error 
detection and retransmission, called automatic repeat request (ARQ). 
This is also know as the backward error correction (BEC). 
◊ In an ARQ system, when errors are detected at the receiver, a request is sent 

for the transmitter to repeat the message, and this continues until the message 
is received correctly. 

◊ The major advantage of ARQ over FEC is that error detection 
requires much simpler decoding equipment than does error 
correction. 
 



5 

Error Control Strategies 

◊ ARQ is adaptive in the sense that information is retransmitted only 
when errors occur. 
 

◊ When the channel error rate is high, retransmissions must be sent too 
frequently, and the system throughput, the rate at which newly 
generated messages are correctly received, is lowered by ARQ. 
 

◊ In general, wire-line communications (more reliable) adopts BEC 
scheme, while wireless communications (relatively unreliable) 
adopts FEC scheme. 
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Error Detecting Codes 

◊ Cyclic Redundancy Code (CRC Code) – also know as the 
polynomial code. 
 

◊ Polynomial codes are based upon treating bit strings as 
representations of polynomials with coefficients of 0 and 1 only. 

◊ For example, 110001 represents a six-term polynomial: x5+x4+x0 
 

◊ When the polynomial code method is employed, the sender and 
receiver must agree upon a generator polynomial, G(x), in advance. 

◊ To compute the checksum for some frame with m bits, 
corresponding to the polynomial M(x), the frame must be longer 
than the generator polynomial. 
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Error Detecting Codes 

◊ The idea is to append a checksum to the end of the frame in such a 
way that the polynomial represented by the checksummed frame is 
divisible by G(x). 

◊ When the receiver gets the checksummed frame, it tries dividing it 
by G(x). If there is a remainder, there has been a transmission error. 

◊ The algorithm for computing the checksum is as follows: 
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Calculation of the polynomial code checksum 



10 

Calculation of the polynomial code checksum 
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◊ Examples of CRCs used in practice: 
 
 
 
 
 

◊ A 16-bit checksum catches all single and double errors, all 
errors with an odd number of bits, all burst errors of length 
16 or less, 99.997% of 17-bit error bursts, and 99.998% of 
18-bit and longer bursts. 

Cyclic Redundancy Code (CRC) 
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Structure of Convolutional Encoder 

1 2 k 1 2 k 1 2 k 

1 2 K 

+ + + + 

k bits 

1 2 n-1 n 

Output 
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Convoltuional Code 

◊ Convolutional codes 
◊ k = number of bits shifted into the encoder at one time 

◊ k=1 is usually used!! 

◊ n = number of encoder output bits corresponding to the k 
information bits 

◊ r = k/n = code rate 
◊ K = constraint length, encoder memory 

 
◊ Each encoded bit is a function of the present input bits and 

their past ones. 
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Generator Sequence 

◊   
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Convolutional Codes 
An Example – (rate=1/2 with K=2) 
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Trellis Diagram Representation 
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Trellis termination: K tail bits with value 0 are usually added to the end of the code. 
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Encoding Process 
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Viterbi Decoding Algorithm 

◊ Maximum Likelihood (ML) decoding rule 
 
 
 
 

◊ Viterbi Decoding Algorithm 
◊ An efficient search algorithm 

◊ Performing ML decoding rule. 
◊ Reducing the computational complexity. 

 

received sequence r 
ML detected sequence d 

min(d,r) !! 
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Viterbi Decoding Algorithm 

◊ Basic concept 
◊ Generate the code trellis at the decoder 
◊ The decoder penetrates through the code trellis level by level in 

search for the transmitted code sequence 
◊ At each level of the trellis, the decoder computes and compares 

the metrics of all the partial paths entering a node 
◊ The decoder stores the partial path with the larger metric and 

eliminates all the other partial paths. The stored partial path is 
called the survivor. 
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Viterbi Decoding Algorithm 
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Viterbi Decoding Algorithm 
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Viterbi Decoding Algorithm 
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Viterbi Decoding Algorithm 
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Viterbi Decoding Algorithm 
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Viterbi Decoding Algorithm 
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Viterbi Decoding Algorithm 
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Viterbi Decoding Algorithm 
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Linear Block Code 

◊ Consider then an (n, k) linear block code 
◊ k : bits of message sequence.  
◊ n : code bits.  
◊ n-k bits are referred to as parity check bits of the code. 

 
◊ Definition: A block code of length n and 2k code word is 

called a linear (n, k) code iff its 2k code words form a k-
dimensional subspace of the vector space. 

 

◊ In fact, a binary block code is linear iff the module-2 
sum of two code word is also a code word 
◊ 0 must be code word. 
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◊ Generator Matrix 
◊ Since an (n, k) linear code C is a k-dimensional subspace of the 

vector space Vn of all the binary n-tuple, it is possible to find k 
linearly independent code word, g0 , g1 ,…, gk-1 in C  

 
 

 where ui = 0 or 1 for 0 ≤ i < k. 
◊ Let us arrange these k linearly independent code words as the 

rows of a k × n matrix as follows: 
 
 

 
 
  where gi = (gi0, gi1,…,gi,n-1)  for 0 ≤ i < k. 
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◊ If u = (u0,u1,…,uk-1) is the message to be encoded, the 
corresponding code word can be given as follows: 
 
 
 
 
 

◊ Note that any k linearly independent code words of an  (n, 
k) linear code can be used to form a generator matrix for 
the code, i.e. generator matrix is not unique. 
 

0

1
0 1 1 0 0 1 1 1 1

1

( , ,..., )k k k
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u u u u u u− − −
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v u G g g g

g


Generator Matrix 
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◊ A desirable property for a linear block code is the 
systematic structure of the code words as shown in the 
following figure. 
◊ where a code word is divided into two parts 

◊ The message part consists of k information digits 
◊ The redundant checking part consists of n − k parity-check digits 

◊ A linear block code with this structure is referred to as a 
linear systematic block code  

 
 
 
                    Systematic format of a code word 

Redundant checking part Message part 

n - k  digits k  digits 

Systematic Code 
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◊ A linear systematic (n, k) code is completely specified by a 
k × n matrix G of the following form :  
 
 
 
 
 
 
 
 
 

where pij = 0 or 1 
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◊ For any k × n matrix G with k linearly independent rows, there exists 
an (n-k) ×n matrix H with n-k linearly independent rows such that 
any vector in the row space of G is orthogonal to the rows of H and 
any vector that is orthogonal to the rows of H is in the row space of 
G. 

◊ An n-tuple v is a code word in the code generated by G if and only if 
v • HT = 0 

◊ This matrix H is called a parity-check matrix of the code 
◊ The 2n-k linear combinations of the rows of matrix H form an (n, n – 

k) linear code Cd 

◊ This code is the null space of the (n, k) linear code C generated by 
matrix G  

◊ Cd is called the dual code of C 

Parity Check Matrix 
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◊ If the generator matrix of an (n,k) linear code is in the 
systematic form of (*) in page 34, the parity-check matrix 
may take the following form :  
 

    

T
n k

k- ,

k - ,

k - ,

,n-k - ,n-k - k - ,n-k -
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 
 
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0 1 0 0
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0 0 0 1

Parity Check Matrix 
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◊ Let hj be the jth row of H  
 
 

 for 0 ≤ i < k and 0 ≤  j < n – k 
 
◊ This implies that G • HT = 0 

 
 

0=+=⋅ ijijji pphg

Parity Check Matrix 
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◊ The generator matrix G is uses in the encoding operation at the 
transmitter. On other hand, the parity-check matrix H is used in the 
decoding operation at the receiver. 

◊ Let , 
 

◊  r denote the 1-by-n received vector that results from sending the 
code vector c over a noisy channel. 

◊ e is the error vector or error pattern. 
 

( )10.78= +r c e

( )
( )

 1 if an error has occurred in the th location
 
 0 otherwise

i i
i

i i

r ci
e

r c
≠

=  =
0,1, , 1i n= −

( )0 1 1, , , ne e e −+ =e = r c 

( )10.79

Syndrome 
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◊ The receiver has to decode the code vector c from the received r. 
◊ The algorithm commonly used to perform this decoding operation 

stars  with the computation of a 1-by-(n-k) vector the error-
syndrome vector or simply the syndrome. 

◊ Given a 1-by-n received vector r, the syndrome is defined as 
 

◊ s=0 if and only if r is a code word and receiver accepts r as the 
transmitted code word. 

◊  s≠0 if and only if r is not a code word and presence of errors has 
been detected. 

◊ When the error pattern  e is identical to a nonzero code word  (i.e., r 
contain errors but s=r∙HT=0), error patterns of this kind are called 
undetectable error patterns. 
◊ There are 2k-1     undetectable error patterns. 

( )0 1 1= , , ,T
n ks s s − −=s rH  ( )10.80

Syndrome 
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◊ The syndrome has the following important properties. 
◊ Property 1 : 

◊ The syndrome depends only on the error pattern, and not on the 
transmitted codeword. 

 Proof : Using Eqs.(10.78) and (10.80) and then Eq.(10.77) to 
obtain 
 
 
 
 

◊ Hence, the parity-check matrix H of a code permits us to 
compute the syndrome s, which depends only upon the error 
pattern e. 

( )

( )0 1 1, , ,

T

T T

T

n ks s s − −

= +

= +

=

=

s c e H

cH eH
eH



( )10.81

T =cH 0

Syndrome 
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◊ Property 2 : 
◊ All error patterns that differ by a code word have the same syndrome. 

 

◊ Proof: 
◊ For k message bits, there are 2k distinct code vectors denoted 

as ci, i=1, 2, …, 2k. For any error pattern e, we define the 2k  
distinct vectors ei as 
 

◊ In any event, multiplying both sides of Eq. (10.82) by matrix 
HT, we get   

 
 
 which is independent of index i. 

,  1, ,2k
i i i= + =e e c 

( )10.82

T T T
i i

T

= +

=

e H eH c H

eH ( )10.83

Syndrome decoding - I 
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◊ The set of vectors {ei, i=1, 2, …, 2k} so defined is called a coset of 
the code. In other words, a code set has exactly 2k elements that 
differ at most by a code vector. 

◊ Because there are 2n possible received vectors, and a coset has 2k 
different  elements, so an (n,k) linear block code has 2n-k possible 
cosets. 

◊ From Eq. (10.83), we may state that each coset of the code is 
characterized by a unique syndrome. 

◊ Based on Eqs. (10.69), (10.75), and (10.81) we obtain the (n-k) 
elements of the  syndrome s as: T

n k− =  H I P T=s eH

1 0 00 1 10 1 1,1

2 1 01 1 11 1 1,2

1 0, 1 1 1,

n k n k n k

n k n k n k

n k n k n k n k n k n k

s e e p e p e p
s e e p e p e p

s e e p e p

− − + − −

− − + − −

− − − − − + − − −

= + + + +

= + + + +

= + +









( )10.84

Syndrome decoding - I 
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◊ The syndrome digits are linear combinations of the error digits. 
◊ The syndrome digits can be used for error detection. 
◊ Because the n – k linear equations of  (10.84) do not have a unique 

solution but have 2k solutions. 
◊ There are 2k error pattern that result in the same syndrome, and the 

true error pattern e is one of them. 
◊ The decoder has to determine the true error vector from a set of 2k  

candidates. 
◊ Knowledge of the syndrome s reduce the search for the true error 

pattern e from 2n to 2n-k. 
◊ In particular, the decoder has the task of making the best selection 

from the coset corresponding to s. 
  

Syndrome decoding - I 
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Minimum Distance Consideration 

◊ Let code vectors c1 and c2 have the same number of elements. 
◊ The Hamming distance between c1 and c2, denoted d (c1,c2), is 

defined as the number of places where they differ. 
◊ For example, the Hamming distance between c1=(1001011) and 

c2=(0100011) is 3. 
◊ The Hamming weight (or simply weight) of a code vector c, denote 

by w(c), is defined as the number of nonzero elements of c. 
◊ For example, the Hamming weight of c=(1001011) is 3.  

◊ From the definition of hamming distance and definition of module-2 
addition that the Hamming weight between two n-tuple, c1 and c2, is 
equal to the Hamming weight of the sum of c1 and c2, that is 
 ( ) ( )1 2 1 2,d w= +c c c c
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◊ The minimum distance dmin of a linear block code is defined as the smallest 
Hamming distance between any pair of code vectors in the code. 

◊ Given a block code C ,the minimum distance of C, denoted dmin, 
 is defined as  
 
◊ If C is a linear block, the sum of two vectors is also a code vector. 
◊ From d (c1,c2)=w (c1+c2), the Hamming distance between two code vectors 

in C is equal to the Hamming weight of third code vector in C 

( ){ }min 1 2 1 2 1 2min , : , ,d d C= ∈ ≠c c c c c c

( ){ }
( ){ }

min 1 2 1 2 1 2

min

min

min : , ,

min : ,

 is called the minimum weight of the linear code 

d w C

w C

w
w C

= + ∈ ≠

= ∈ ≠

=

c c c c c c

x x x 0

Minimum Distance Consideration 
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◊ The minimum distance dmin is related to the parity-check matrix H of the 
code. 

◊ Let the matrix H be expressed in terms of its columns as follows: 
 

◊ From Eq.(10.77) we get                
 
 
  
  
The vector c must have 1s in such positions that the correspond rows of                    

HT sum to the zero vector 0. 
◊ Because dmin= wmin, the smallest Hamming weight equals the minimum 

distance of the code. Hence, the minimum distance of a linear block code 
is defined by the minimum number of rows of the matrix       whose sum is 
equal to the zero vector. 

[ ]1 2, , , n=H h h h ( )10.85
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 = = + + + =
 
 
  

cH  



Minimum Distance Consideration 
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◊ The minimum distance, dmin, determines the error-correcting 
capability of the code. 

◊ If a code vector ci is transmitted and the received vector is r=ci+e , 
 we require that the decoder output ĉ=ci, whenever w(e)≤ t. 
  
◊ The best strategy for decoder then is to pick the code vector d(ci,r) 

closest to the received vector r, that is, the one for which   
 is smallest. 
 
◊ With such a strategy, the decoder will be able to detect and correct 

all error patterns of w(e)≤ t, we will show that dmin ≥ 2t+1.         

error bits t≤

Minimum Distance Consideration 
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◊ We construct two spheres, each of radius t, around the points that 
represent ci and cj.  

◊ Let these two spheres are disjoint, d(ci,cj) ≥ 2t+1, as depicted in 
Figure 10.23a. 
◊ If the code vector ci is transmitted, and d(ci,r) ≤ t, it is clear that the decoder 

will pick ci as it is the code vector closest to the received vector r.  
 

Figure 10.23

Minimum Distance Consideration 
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◊ Let these two spheres are intersect, d(ci,r) ≤ 2t, as depicted in Figure 
10.23b. 
◊ If then the code vector     is transmitted, there exists a received vector r,  and 

d(ci,r) ≤ 2t. But now, r is as close to ci as it is to cj, so there is now the 
possibility of the decoder picking the vector  cj, which is wrong. 

Figure 10.23

ic

Minimum Distance Consideration 
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◊ An (n,k) linear block code has the power to correct all error patterns 
of weight t or less if and only if 
 
 

◊ By definition, the smallest distance between any pair of code vectors 
is the minimum distance of the code, dmin. 
 

◊ So, an (n,k) linear block code of minimum distance dmin can correct 
up to t errors if, and only if,  

( ), 2 1  for all  and i j i jd t≥ +c c c c

( )min
1 1
2

t d ≤ −  
( )10.86

Minimum Distance Consideration 
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Syndrome Decoding - II 

 We are now ready to describe a syndrome-based decoding scheme 
for linear block code. 

 

◊ Let                    denote the 2k code vectors of an (n,k) linear block 
code. 

 

◊ r denote the receiver vector, which may have one of 2n possible 
values. 

 

◊ The receiver has the task of partitioning the 2n possible received 
vector into 2k disjoint subset                         , Di is the ith subset 
correspond to code vector ci for 1≤ i≤ 2k. 

 

◊ For decoding to be correct, r must be in the subset that belongs to ci. 
 

1 2 2
, , , kc c c

1 2 2
, , , kD D D
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◊ The 2k subsets described herein constitute a standard array of the linear 
block code. 

 

◊ To construct it, we may exploit the linear structure of the code by 
proceeding as follows: 

 

1. The 2k code vectors are placed in a row with the all-zero code vector 
c1 as the left-most element. 

 

2. An error pattern e2 is picked and placed under c1, and a second row is   
formed by adding e2 to each of the remaining code vectors in the first 
row; it is important that the error pattern chosen as the first element in 
a row not have previously appeared in the stand array. (Note that 
e1=0). 

 

3. Step 2 is repeated until all the possible error pattern have been 
accounted for. 

Syndrome Decoding - II 
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◊ Figure 10.24 illustrates the structure of the stand array. 
 

◊ The 2n-k rows of the array represent the cosets of the code, and their 
first elements                   are called coset leaders.  2 2

, , n k−e e

( )Figure 10.24 Stand array for an ,  block coden k

Syndrome Decoding - II 
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◊ For a given channel, the probability of decoding error is minimized 
when the most likely error are chosen as the coset leader.  

◊ In the case of a binary symmetric channel, the smaller the Hamming 
weight of an error pattern the more likely it is to occur. 

 The standard array should be constructed with each coset leader 
having the minimum Hamming weight in its coset. 

 

◊ Syndrome Decoding 
1. For the received vector r, compute the syndrome s=rHT. 
2. Within the coset characterized by the syndrome s, identify the coset leader 

(i.e., the error pattern with the largest probability of  occurrence); call it e0. 
3. Compute the code vector 

 
 as the decoded version of the received vector r. 

 

Syndrome Decoding - II 

0= +c r e ( )10.87
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