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o We consider the problem of signal design when the channel i %
limited to some specified bandwidth of W Hz.

o The channel may be modeled as a linear filter having an equivalent
low-pass frequency response C( f) that is zero for | f | >W.

o Our purpose Is to design a signal pulse g(t) in a linearly modulated
signal, represented as
=>1,9(t—nT)

that efficiently utilizes the total available channel bandwidth W.

o When the channel is ideal for | f | <W, a signal pulse can be designed that
allows us to transmit at symbol rates comparable to or exceeding the channel
bandwidth W.

o When the channel is not ideal, signal transmission at a symbol rate equal to or
exceeding W results in inter-symbol interference (ISI) among a number of
adjacent symbols.
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o FIg. (a) Is a band-limited pulse having zeros periodically spacIéAB'in

time at £T, +2T, etc.
o If information is conveyed by the pulse amplitude, as in PAM, for

example, then one can transmit a sequence of pulses, each of which
has a peak at the periodic zeros of the other pulses.
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o However, transmission of the pulse through a channel modeled as
having a linear envelope delay t( f) [quadratic phase 0( f )] results in
the received pulse shown in Fig. (b), where the zero-crossings that
are no longer periodically spaced.
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o A sequence of successive pulses would no longer be distinguishable.
Thus, the channel delay distortion results in ISI.

o It is possible to compensate for the nonideal frequency-response of
the channel by use of a filter or equalizer at the demodulator.

o FIg. (c) illustrates the output of a linear equalizer that compensates
for the linear distortion in the channel.
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o The equivalent low-pass transmitted signal for several different

types of digital modulation technigues has the common form
v(t)=>1,g(t—nT)
n=0

where {l_}: discrete information-bearing sequence of symbols.

g(t): a pulse with band-limited frequency-
response G(f),1.e., G(f)=0for|f|>W.

o This signal Is transmitted over a channel having a frequency
response C(f), also limited to | f| < W.

o The received signal can be represented as
r(t)=>Y 1.ht—nT)+z(t)
n=0

where h(t)=[" g(r)c(t—z)dz and z(t) is the AWGN.
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Suppose that the received signal is passed first through a filter and
then sampled at a rate 1/T samples/s, the optimum filter from the

point of view of signal detection is one matched to the received

pulse. That is, the frequency response of the receiving filter is
H*(f).
We denote the output of the receiving filter as

y(t)= z | x(t—nT)+v(t)
where

X(t): the pulse representing the response of the receiving

filter to the input pulse h(t).
v(t): response of the receiving filter to the noise z(t).
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o Ify(t) is sampled at times t = KT +1,, k=0, 1,---, we have *

YT +7,) =y = 3 1x(KT =0T +7,)+ V(KT +7,)
n=0
or, equivalently,

Ve =D 1 X o+, k=01,..
n=0

where t,: transmission delay through the channel.
o The sample values can be expressed as
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Yv = Xo + Vi
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o We regard X, as an arbitrary scale factor, which we arbitrarily set
equal to unity for convenience, then

yk — Ik +Z|nxk—n +Vk
n=0

n=k

where
l: the desired information symbol at the k-th
sampling instant.

Z InXk—n - 1S
n=0

n=k

v,: additive Gaussian noise variable at the k-th
sampling instant.
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The amount of ISI and noise in a digital communication system can

be viewed on an oscilloscope.

For PAM signals, we can display the received signal y(t) on the
vertical input with the horizontal sweep rate set at 1/T.

The resulting oscilloscope display is called an eye pattern.
Eye patterns for binary and quaternary amplitude-shift keying:

o The effect of ISI is to cause the eye to close.
o Thereby, reducing the margin for additive noise to cause errors.

10
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o Effect of ISI on eye opening:

Optimuim
sampling
time
Sensitivity Distortion of
to timing ZeTroO Crossings
E',I‘Igr e T
=
. e
\
T

Peak distortion Noise margin

o ISl distorts the position of the zero-crossings and causes a
reduction in the eye opening.

o Thus, It causes the system to be more sensitive to a
synchronization error.

11
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o For PSK and QAM, it iIs customary to display the “eye pattern” as a
two-dimensional scatter diagram illustrating the sampled values {y, }
that represent the decision variables at the sampling instants.

o Two-dimensional digital “eye patterns.”

- =) = | o=
. - = =
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o | o = | =
Transmitted Received signal samples
cight-phase signal at the ouput of demodulator

(a) (H)
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o Assuming that the band-limited channel has ideal frequency-

response, i.e., C(f) =1 for | f| <W, then the pulse x(t) has a spectral
characteristic X(f) = |G( )%, where

x(t)=[ X(f)e2"df

o We are interested in determining the spectral properties of the pulse
X(t), that results in no inter-symbol interference.

o Since

yk — Ik +Z|nxk—n +Vk
n=0

n=k

Xk:{l (k =0) (%)

13
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o Nyquist pulse-shaping criterion (Nyquist condition for
zero ISI)
o The necessary and sufficient condition for x(t) to satisfy

1 (n=0)
X(nT):{O (n=0)

IS that its Fourier transform X( f ) satisfy

o0

> X(f+m/T)=

M=—o0

14
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o Proof:
o Ingeneral, x(t) is the inverse Fourier transform of X( f). Hence,

X(t)= [ X(f)e*"df

o At the sampling instant t = nT,

X(nT)=[" X(f)e/>""df

15
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o Breaking up the integral into integrals covering the finite range of

1/T, thus, we obtain o m
= + —
(2m+1) /2T j27fT T
Z IZm 1/2T e o f _{Zm—l 2m+1}
j L2t CooT
' j27f'nT '
_ij (f+m/T)e df f,:[—_l’i}
m=—o0 2T 2T
21 | & (> T df =df’
IWT LZOOX (f ij/T)}eJ df

_ j YT g f)el? ™ df (1) o
1/2T Periodic
© function.
where we define B(f) as B(f)= > X(f+m/T)

m=—o0

16
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o Obviously B( f) is a periodic function with period 1/T, an o
therefore, it can be expanded in terms of its Fourier series
coefficients {b,} as

_ i bnejZﬂnfT (2)

N=—o0

where -2
b, =T j o B(F)e ™ df (3)

x(nT)=[" B(F)e™ ™t (1)
o Comparing (1) and (3), we obtain

X(-nT)=["" B(f)e > mar =%b

n

bn = TX(_ nT) (4)

17
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o Therefore, the necessary and sufficient condition for

yk = Ik_l_zlnxk—n_l_vk

n=0

n=k
to be satisfied Is that
{T (n=0)
b, =
0 (n=0)
which, when substituted into B(f )= ibnejz”””, yields
B(f)=T

N

N=—0c0

or, equivalently i X(f+m/T)=T

M=—0

This concludes the proof of the theorem.

18
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o Suppose that the channel has a bandwidth of W. Then C( f)
=0 for|f|>Wand X(f)=0for|f|>W.
o When T <1/2W (or 1/T > 2W)

iX(_ f+n/T) A
| — J m >
e L R e v
o Since B(f)=>"" X (f +n/T) consists of nonoverlapping

replicas of X( f), separated by 1/T, there is no choice for X(f) to
ensure B(f) =T in this case and there is no way that we can
design a system with no ISI.

19
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o When T =1/2W, or 1/T = 2W (the Nyquist rate), the replications
of X(f), separated by 1/T, are shown below:

ﬁjX(ﬁ nIT) §

el 0 vkl 1
T W=sr T

o Inthis case, there exists only one X( f) that results in B(f) =T,
namely, T (|[f|<W
0 (otherwise)
which corresponds to the pulse
sin(zt/T
X(t) = (7Y )Esinc(%tj

mt/T

20
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The smallest value of T for which transmission with zero IS‘iB IS
possible is T = 1/2W, and for this value, x(t) has to be a sinc
function.

The difficulty with this choice of x(t) is that it is noncausal and
nonrealizable.

A second difficulty with this pulse shape is that its rate of
convergence to zero is slow.

The tails of x(t) decay as 1/t; consequently, a small mistiming
error in sampling the output of the matched filter at the
demodulator results in an infinite series of ISI components.

Such a series is not absolutely summable because of the 1/t rate
of decay of the pulse, and, hence, the sum of the resulting ISI

does not converge.

1+1+1+1+ =7 1+1+1+1+ =7
2 4 8 2

21
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o When T > 1/2W (or 1/T<2W), B( f) consists of overlapping
replications of X( f) separated by 1/T:

_,l _W_%_|_W l_WW l

o Inthis case, there exist numerous choices for X( f) such that
B(f)=T.

22
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o A particular pulse spectrum, for the T > 1/2W case, that has desirable

spectral properties and has been widely used In practice is the raised
cosine spectrum.

o Railsed cosine spectrum:

T (os|f|sl_ﬂj
2T
ch(f):<1{l+cos{ T(|1‘ _ﬂﬂ} (1-_S|f|£1+ﬂj
2T 2T 2T
0 (|f|>l;T'Bj

o PB: roll-off factor. (0 <p< 1)

23
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I o The bandwidth occupied by the signal beyond the Nyquist frequency
1/2T is called the excess bandwidth and is usually expressed as a
percentage of the Nyquist frequency.

o P=1/2 => excess bandwidth = 50 %.
o =1 =>excess bandwidth = 100%.
o The pulse x(t), having the raised cosine spectrum, is
(t) = sin(7t/T) cos(zft/T)
/T 1-4p%%/T?
=sinc(at/T) COS(Z'BE/ ! )2
1-45%%/T

o X(t) 1s normalized so that x(0) = 1.

24
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o Pulses having a raised cosine spectrum:

x ()

Sl Zalil
7 27

(€2))

o ForB= 0, the pulse reduces to x(t) = sinc(xt/T), and the symbol
rate 1/T = 2W.

o When B=1, the symbol rate is 1/T = W.

25
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o In general, the tails of x(t) decay as 1/t3 for > 0.

o Consequently, a mistiming error in sampling leads to a series of
ISI components that converges to a finite value.

o Because of the smooth characteristics of the raised cosine spectrum,
It Is possible to design practical filters for the transmitter and the
receiver that approximate the overall desired frequency response.

o Inthe special case where the channel is ideal, 1.e., C(f) =1,

| | <W, we have
ch(f):GT(f)GR(f)

where G.( f) and Gg( ) are the frequency responses of the two
filters.

26
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o If the receiver filter 1s matched to the transmitter filter, we ha\lfé]3

Xeol )= Gr(f) Gg(F) = | Gy(f)P. Ideally,

Gy (f)=4/|X (e

and Gy(f) =G (f), where t, is some nominal delay that is required
to ensure physical realizability of the filter.

o Thus, the overall raised cosine spectral characteristic is split evenly
between the transmitting filter and the receiving filter.

o An additional delay is necessary to ensure the physical realizability
of the receiving filter.

27
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o The cosine roll-off transfer function can be achieved by using

Identical square root raised cosine filter \/ X, ( f ) at the transmitter
and receiver.

o The pulse SRRC(t), having the square root raised cosine spectrum, is

SRRC (t) = " [ﬂ{(l—ﬂ)jMﬁthCOS(ﬂth(Hﬂ)j

i[ford ]

where T, Is the inverse of chip rate (= 0.2604167 us)
and g = 0.22 for WCDMA.

28
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o Itis necessary to reduce the symbol rate 1/T below the Nyquist rate
of 2W symbols/s to realize practical transmitting and receiving filters.

o Suppose we choose to relax the condition of zero ISI and, thus,
achieve a symbol transmission rate of 2W symbols/s.

o By allowing for a controlled amount of ISI, we can achieve this
symbol rate.

o The condition for zero ISl is x(nT)=0 for n#0.

o Suppose that we design the band-limited signal to have controlled
ISI at one time instant. This means that we allow one additional
nonzero value in the samples {x(nT)}.

29



Design of Band-limited Signals with Controlled ISI //w '
/

-- Partial-Response Signals 3

AR
o One special case that leads to (approximately) physically reallzable

transmitting and receiving filters is the duobinary signal pulse:
1 =0,1
r)={t (=0

0 (otherwise)

o Using Equation (4) in Page 17
b, =Tx(-nT)

. _{T (n=0,-1)

B 0 (Otherwise) B( f ) = Z bneJZﬂnfT

o When substituted into Equation (2) in Page 17, we obtain:

B(f)=T +Te

30
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o It 1s Impossible to satisfy the above equation for 1/T>2W.
o For T=1/2W, we obtain

( 1 -

— (Lo AW fl<W
0 (otherwise)

ie‘j’"‘/z"V cosi Qf\<W)
W 2W

0 (otherwise)
o Therefore, x(t) Is given by:
X(t) :sinc(27z\Nt)+sinc{27z(Wt—%ﬂ

o This pulse is called a duobinary signal pulse.

31
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o Time-domain and frequency-domain characteristics of a

duobinary si

x(n

gnal.

A/

LN\
37 2T\ _/-T

; VAN
0 T 2T\_/3T 4T 1

o Modified duobinary signal pulse:

x(%} =x(nT)=4-1

32

The spectrum decays
to zero smoothly.
--physically realizable

W

(n=-1)
(n=1)

(otherwise)
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o The corresponding pulse x(t) is given as

t+T t—T
x(t):sincﬁ( " )—sincﬂ( )
o The spectrum is given by
L (e’”fm’ “”‘C/W):lsmi fl<w
X(f)=12wW W
0 [fl>W
x(1) | X))l
/\l i v i
,4@\/_27‘ ...IT 0 1: 2T, /}\—/;H ! —W /;ﬂ wor
ik Zero at f=0.

33



Design of Band-limited Signals with Controlled ISI //-(_:
-- Partial-Response Signals 2\'47

o Other physically realizable filter characteristics are obtained by
selecting different values for the samples {x(n/2W)} and more than
two nonzero samples.

o AS we select more nonzero samples, the problem of unraveling the
controlled ISI becomes more cumbersome and impractical.

o When controlled ISl is purposely introduced by selecting two or
more nonzero samples form the set {x(n/2W)}, the class of band-
limited signal pulses are called partial-response signals:

34
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o Two methods for detecting the information symbols at the receiver

when the received signal contains controlled ISI:

o Symbol-by-symbol detection method.
o Relatively easy to implement.

o Maximume-likelihood criterion for detecting a sequence of
symbols.

o Minimizes the probability of error but is a little more complex to
Implement.

o The following treatment is based on PAM signals, but it is easily
generalized to QAM and PSK.

o We assume that the desired spectral characteristic X( f) for the
partial-response signal is split evenly between the transmitting and
receiving filters, i.e., |G( f)|=|Gg( f)|=] X( f)|Y2.

35
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o Symbol-by-symbol suboptimum detection
o For duobinary signal pulse, x(nT)=1, for n=0,1, and Is zero
otherwise.

o The samples at the output of the receiving filter (demodulator)

have the form
y. =B, +v. =1_+1__+V

m

where {l .} Is the transmitted sequence of amplitudes and {v,,} IS
a sequence of additive Gaussian noise samples.

o Consider the binary case where | _=+1, B, takes on one of three
possible values, namely, B, =-2,0,2 with corresponding
probabilities ’, %, /.

o If 1., 1S the detected symbol from the (m-1)th signaling

36
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o Symbol-by-symbol suboptimum detection

Interval, its effect on B, the received signal in the mth
signaling interval, can be eliminated by subtraction, thus

allowing I to be detected.

o Major problem with this procedure is error propagation: if
|, IS In error, its effect on B, Is not eliminated but, in fact, Is

reinforced by the incorrect subtraction.
o Error propagation can be avoided by precoding the data.
o The precoding Is performed on the binary data sequence prior

to modulation. Modulo-2 subtraction
o From the data sequence {Dn} the precoded sequence {P.} Is
given by:

P =D & Pm_l, m=12,..

37
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o Symbol-by-symbol suboptimum detection
o Setl =-1ifP =0and I =1ifP_=1,1.e.,1 =2P -1.
o The noise-free samples at the output of the receiving filter are
given by
B,=1,+1,,=(2P,-1)+(2P,,-1)=2(P, +P,, -1)

P+P. :%Bm +1

o Since D, =P, @ P, , it follows that the data sequence D, Is

obtained from B, using the relation:

D —1Bm+1 (mod 2)

m__

o Consequently, if B.=+2, then D=0, and if B_=0, D_=1.

38
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o Symbol-by-symbol suboptimum detection

o Binary signaling with duobinary pulses
Data reference
sequence D, | I 1 0 1 0 0 1 0 0 0 | l
Precoded :
sequence P, @l 0O 1 1 0 0 o 1 1 1 1 0 1 1 0
Transmitted
sequence [, -1 1 =1 1 I -1 -1 -1 1 ] l I -1 1 1 -l
Received
sequence B, 0 0o 0 2 o -2 -2 0 2 2 2 0 0 2 0
Decoded
sequence D, I I I 0 l 0o o1 0 0 0 I 1T 0 l

o The extension from binary PAM to multilevel PAM signaling

o The M-level amplitude sequence {l..} results in a noise-free
sequence
B.=1_+1_, m=12..

m

39
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o Symbol-by-symbol suboptimum detection
which has 2M-1 possible equally spaced levels.
o The amplitude levels are determined from the relation:

| =2P —(M -1)

where {P,.} Is the precoded sequence that is obtained from an
M-level data sequence {D, } according to the relation

P,=D,& P,, (mod M)

where the possible values of the sequence {D.} are 0, 1, 2, ---,
M-1.

o In the absence of noise, the samples at the output is given by:
B.=1_+1_,=2[P +P _,—(M-1)]

m

40
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o Symbol-by-symbol suboptimum detection
1
o Hence P, +P_, = > B, +(M-1)
o Since D,=P.+P._; (mod M), it follows that
1
D, =§Bm +(M =1) (mod M)
o Four-level signal transmission with duobinary pulses (M=4)
Data
sequence D, 0 0 I 3 2 0 3 3 2 I 0
Precoded
sequence P, 0 0 0 1 2 3 1 2 1 1 2 2
Transmitted
sequence [, -3 -3 -3 -1 1 3 3 —1 1 -1 -1 1 I
Received
sequence B, -6 -6 -4 0 4 6 2 0 0o -2 4 P
Decoded
sequence D, 0 0 1 3 2 D 3 3 2 1 0

41
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o Symbol-by-symbol suboptimum detection

o In the case of the modified duobinary pulse, the controlled ISl is
specified by the values x(n/2W)=-1, for n=1, x(n/2W)=1, for n=-1,
and zero otherwise.

o The noise-free sampled output from the receiving filter is

given as:
Bm — Im o Im—2

o Where the M-level sequence {l..} Is obtained by mapping a
precoded sequence according to
| =2P —(M -1)
and
P =D @®P , (mod M)

42
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o Symbol-by-symbol suboptimum detection
o From these relations, it is easy to show that the detection rule
for recovering the data sequence {D,,} from {B_} in the
absence of noise Is
1

D,, == B, (mod M)

o The precoding of the data at the transmitter makes it possible to
detect the received data on a symbol-by-symbol basis without
having to look back at previously detected symbols. Thus, error
propagation is avoided.

o The symbol-by-symbol detection rule is not the optimum
detection scheme for partial-response signals. Nevertheless, it is
relatively simple to implement.

43
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o Maximume-Ilikelihood Sequence Detection

o Partial-response waveforms are signal waveforms with memory.
This memory Is conveniently represented by a trellis.

o The trellis for the duobinary partial-response signal for binary
data transmission is illustrated in the following figure.

172 1/2 1/2

o The first number on the left is the new data bit and the number on the right
IS the received signal level.

44
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o Maximume-Ilikelihood Sequence Detection

o The duobinary signal has a memory of length L=1. In general, for
M-ary modulation, the number of trellis states is Mt

o The optimum maximum-likelihood sequence detector selects the
most probable path through the trellis upon observing the
received data sequence {y,.} at the sampling instants t=mT,
m=1,2,---.

o The trellis search is performed by the Viterbi algorithm.

o For the class of partial-response signals, the received sequence
{y,1<m<N} is generally described statistically by the joint PDF

P(Ynlln), where yy =[y; y, === yn]" and Iy =[l 1, -+ 1]" and N>L.

45
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o Maximume-Ilikelihood Sequence Detection

o When the additive noise Is zero-mean Gaussian, p(yy|ly) 1S @
multivariate Gaussian PDF, I.e.,

1 1 "~
p(yN |IN): (27z'de'[C)N/2 exp|:_5(yN _BN) C 1(YN _BN):|

where By =[B, B, --- By]" is the mean of the vector y, and C is
the N X N covariance matrix of y,.

o The ML sequence detector selects the sequence through the trellis
that maximizes the PDF p(yy|ly)-

o Taking the natural logarithms of p(y|ly):
1 1 o
In p(y, | IN):_EN In(27zdetC)—E(yN -B,)C*(y,—By)

46
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o Maximume-Ilikelihood Sequence Detection

o Glven the received sequence {Yy,.}, the data sequence {l} that
maximizes In p(yy|ly) 1s identical to the sequence {l} that
minimizes (yy-By) C(yy-By), 1.€.,

1, =arg min[(yl\I -B, ) C(y, —BN)]

Iy

o The metric computations in the trellis search are complicated by
the correlation of the noise samples at the output of the matched
filter for the partial-response signal.

o In the case of the duobinary signal waveform, the correlation of
the noise sequence {v,} Is over two successive signal samples.
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o Maximume-Ilikelihood Sequence Detection
o Hence, v, and v, are correlated for k=1 and uncorrelated for
k>1.

o If we isgnore the noise correlation by assuming that E(v.v,, )=0
for k>0, the computation can be simplified to

n ' N L 2
|, =arg min[(yN -By) (Y —BN)}:arg min Z(ym—Zxklmkj
m= k=0

where

M-

B =

m

X, |

m—Kk

7\_
Il

0

and x, = x(KT) are the sampled values of the partial-response
signal waveform.
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AB.

o In this section, we perform the signal design under the condition that
the channel distorts the transmitted signal.

o We assume that the channel frequency-response C( f) is know for
| f [<W and that C( f )=0 for | f |>W.

o The filter responses G;( f) and Gg( f ) may be selected to minimize
the error probability at the detector.

o The additive channel noise is assumed to be Gaussian with power
spectral density @, ().

Modulation LA Demodulation Output
g flter e S hamc] —+®—> filter —|  Detector [———>

data Gr( ) C(f) T Go(f) data

(Gaussian
noise
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o For the signal component at the output of the demodulator, we must

satisfy the condition
GT(f)C(f)GR(f)zXd(f)e‘jz”“O, |f|sW

where X,( f) Is the desired frequency response of the casecade of the
modulator, channel, and demodulator, and t; is a time delay that is
necessary to ensure the physical realizability of the modulation and

demodulation filter.

o The desired frequency response X,( f) may be selected to yield
either zero ISI or controlled ISl at the sampling instants.

o We shall consider the case of zero I1SI by selecting X,( ) = X..( ),
where X..( f) Is the raised cosine spectrum with an arbitrary roll-off

factor.
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o The noise at the output of the demodulation filter may be expressed

as .
v(t)= LO n(t—z)gs(7)dr
where n(t) is the input to the filter.

o SlInce n(t) is zero-mean Gaussian, v(t) Is zero-mean Gaussian, with a
power spectral density

(va(f):q)nn(f)‘GR(f)

o For simplicity, we consider binary PAM transmission. Then, the
sampled output of the matched filter is

‘2

V. =X, +v. =1_+Vv_

where X, Is normalized to unity, |1.=+d, and v, represents the noise
term.
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o

V., IS zero-mean Gaussian with variance
ol =" @, (1)|Ga(F) df

The error probability is given by

1 0 _y2/2 d2\
Pz:—@,fd/ave dy =Q ?J

The probability of error is minimized by maximizing the ratio d%/c?, .

There are two possible solutions for the case in which the additive
Gaussian noise is white so that @, ( f )=N,/2.

1st solution: pre-compensate for the total channel distortion at the
transmitter, so that the filter at the receiver is matched to the
received signal.

SNR
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o The transmitter and receiver filters have the magnitude

characteristics

6, (1= Vel

\c

‘GR( ‘:\/xrc ), [f[=W

| fl<sW
\ (5)

o The phase characteristic of the channel frequency response C( f)
may also be compensated at the transmitter filter.

o For these filter characteristics, the average transmitted power is
E ( |ri ) w

W d? ew X,
Py =—=" [, gt (= |6 (1) df =] E
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o Hence,

w ><I’C
d’*=P,T|| i Z)df (6)

o The noise at the output of the receiver filter is 6°,=N,/2 and,
hence, the SNR at the detector is

d> 2P,T jw X, (
ol N _W‘C(f

\
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o 2nd solution: As an alternative, suppose we split the channel

compensation equally between the transmitter and receiver filters,
l.e.,

(7)
D

o The phase characteristic of C( f) may also be split equally
between the transmitter and receiver filter.

o The average transmitter power is
O Xl
av W ‘C ‘
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o The noise variance at the output of the receiver filter is w
O'VZ:&J‘W ch(f)df
2 Swle(r)
o The SNR at the detector Is
B 1-2
d?2 2P, T| w X.(f)
= C L df
o’ N, L c(f) (8)

o From Equations (6) (P.54) and Equation (8), we observe that when
we express the SNR d?/c?, in terms of the average transmitter power
P.., there is a loss incurred due to channel distortion.

av!
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I‘C(f)df

()

SIAp>

I o In the case of the filters given by Equation (5) (P.53), the loss Is

X
10Iog_[v\vlv
|C

®

1z

L=

In the case of the filters given by Equation (7) (P.55) , the loss Is

10log

J-W ch(f)

Mleof

df

2

When C( f)=1 for | f |<W, the channel is ideal and [ X, (f)df =1

so that no loss Is incurred.

When there is amplitude distortion, |C( f )|<1 for some range of

frequencies in the band | f |<W and there is a loss in SNR.
It can be shown that the filters given by Equation (7) (P.55) result in

the smaller SNR loss.
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