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Introduction
◊ We consider the problem of signal design when the channel is band-

limited to some specified bandwidth of W Hz.
◊ The channel may be modeled as a linear filter having an equivalent 

low-pass frequency response C( f ) that is zero for | f | >W.
◊ Our purpose is to design a signal pulse g(t) in a linearly modulated 

signal, represented as

that efficiently utilizes the total available channel bandwidth W.
◊ When the channel is ideal for | f | ≤W, a signal pulse can be designed that 

allows us to transmit at symbol rates comparable to or exceeding the channel 
bandwidth W.

◊ When the channel is not ideal, signal transmission at a symbol rate equal to or 
exceeding W results in inter-symbol interference (ISI) among a number of 
adjacent symbols.
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◊ Fig. (a) is a band-limited pulse having zeros periodically spaced in 
time at ±T, ±2T, etc.

◊ If information is conveyed by the pulse amplitude, as in PAM, for 
example, then one can transmit a sequence of pulses, each of which 
has a peak at the periodic zeros of the other pulses.
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◊ However, transmission of the pulse through a channel modeled as 
having a linear envelope delay τ( f ) [quadratic phase θ( f )] results in 
the received pulse shown in Fig. (b), where the zero-crossings that 
are no longer periodically spaced.
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◊ A sequence of successive pulses would no longer be distinguishable.  
Thus, the channel delay distortion results in ISI.

◊ It is possible to compensate for the nonideal frequency-response of 
the channel by use of a filter or equalizer at the demodulator.

◊ Fig. (c) illustrates the output of a linear equalizer that compensates 
for the linear distortion in the channel.
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◊ The equivalent low-pass transmitted signal for several different 
types of digital modulation techniques has the common form

where {In}: discrete information-bearing sequence of symbols.
g(t): a pulse with band-limited frequency-

response G( f ), i.e., G( f ) = 0 for | f | > W.
◊ This signal is transmitted over a channel having a frequency 

response C( f ), also limited to | f | ≤ W.
◊ The received signal can be represented as

where                                       and z(t) is the AWGN.
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◊ Suppose that the received signal is passed first through a filter and 
then sampled at a rate 1/T samples/s, the optimum filter from the 
point of view of signal detection is one matched to the received 
pulse.  That is, the frequency response of the receiving filter is 
H*( f ).

◊ We denote the output of the receiving filter as

where
x(t): the pulse representing the response of the receiving 

filter to the input pulse h(t).
v(t): response of the receiving filter to the noise z(t).

7

( ) ( ) ( )∑
∞

=

+−=
0n

n tvnTtxIty

Signal Design for Band-Limited Channels



◊ If y(t) is sampled at times t = kT +τ0, k = 0, 1,…, we have

or, equivalently,

where τ0: transmission delay through the channel.
◊ The sample values can be expressed as

8

( ) ( ) ( )0
0

00 τττ +++−=≡+ ∑
∞

=

kTvnTkTxIykTy
n

nk

0
,    0,1,...k n k n k

n
y I x v k

∞

−
=

= + =∑

0
00

1 ,    0,1,...k k n k n k
n
n k

y x I I x v k
x

∞

−
=
≠

 
 = + + =  
 

∑

Signal Design for Band-Limited Channels



◊ We regard x0 as an arbitrary scale factor, which we arbitrarily set 
equal to unity for convenience, then

where
Ik: the desired information symbol at the k-th 

sampling instant.

: ISI

vk: additive Gaussian noise variable at the k-th 
sampling instant.
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◊ The amount of ISI and noise in a digital communication system can 
be viewed on an oscilloscope.

◊ For PAM signals, we can display the received signal y(t) on the 
vertical input with the horizontal sweep rate set at 1/T.

◊ The resulting oscilloscope display is called an eye pattern.
◊ Eye patterns for binary and quaternary amplitude-shift keying:

◊ The effect of ISI is to cause the eye to close.
◊ Thereby, reducing the margin for additive noise to cause errors.
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◊ Effect of ISI on eye opening:

◊ ISI distorts the position of the zero-crossings and causes a 
reduction in the eye opening.

◊ Thus, it causes the system to be more sensitive to a 
synchronization error.
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◊ For PSK and QAM, it is customary to display the “eye pattern” as a 
two-dimensional scatter diagram illustrating the sampled values {yk} 
that represent the decision variables at the sampling instants.

◊ Two-dimensional digital “eye patterns.”
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Design of Band-Limited Signals for No ISI
The Nyquist Criterion

◊ Assuming that the band-limited channel has ideal frequency-
response, i.e., C( f ) = 1 for | f | ≤ W, then the pulse x(t) has a spectral 
characteristic X( f ) = |G( f )|2, where

◊ We are interested in determining the spectral properties of the pulse 
x(t), that results in no inter-symbol interference.

◊ Since

the condition for no ISI is
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◊ Nyquist pulse-shaping criterion (Nyquist condition for 
zero ISI)
◊ The necessary and sufficient condition for x(t) to satisfy

is that its Fourier transform X( f ) satisfy
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◊ Proof:
◊ In general, x(t) is the inverse Fourier transform of X( f ). Hence,

◊ At the sampling instant t = nT,
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◊ Breaking up the integral into integrals covering the finite range of 
1/T, thus, we obtain

where we define B( f ) as
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◊ Obviously B( f ) is a periodic function with period 1/T, and, 
therefore, it can be expanded in terms of its Fourier series 
coefficients {bn} as

where

◊ Comparing (1) and (3), we obtain
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◊ Therefore, the necessary and sufficient condition for

to be satisfied is that

which, when substituted into                                , yields

or, equivalently

This concludes the proof of the theorem.
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◊ Suppose that the channel has a bandwidth of W.  Then C( f ) 
≡ 0 for | f | > W and X( f ) = 0 for | f | > W.
◊ When T < 1/2W (or 1/T > 2W)

◊ Since consists of nonoverlapping
replicas of X( f ), separated by 1/T, there is no choice for X( f ) to 
ensure B( f ) ≡ T in this case and there is no way that we can 
design a system with no ISI.
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◊ When T = 1/2W, or 1/T = 2W (the Nyquist rate), the replications 
of X( f ), separated by 1/T, are shown below:

◊ In this case, there exists only one X( f ) that results in B( f ) = T, 
namely,

which corresponds to the pulse
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◊ The smallest value of T for which transmission with zero ISI is 
possible is T = 1/2W, and for this value, x(t) has to be a sinc
function.

◊ The difficulty with this choice of x(t) is that it is noncausal and 
nonrealizable.

◊ A second difficulty with this pulse shape is that its rate of 
convergence to zero is slow.

◊ The tails of x(t) decay as 1/t; consequently, a small mistiming 
error in sampling the output of the matched filter at the 
demodulator results in an infinite series of ISI components.

◊ Such a series is not absolutely summable because of the 1/t rate 
of decay of the pulse, and, hence, the sum of the resulting ISI 
does not converge.
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◊ When T > 1/2W (or 1/T<2W), B( f ) consists of overlapping 
replications of X( f ) separated by 1/T:

◊ In this case, there exist numerous choices for X( f ) such that 
B( f ) ≡ T.
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◊ A particular pulse spectrum, for the T > 1/2W case, that has desirable 
spectral properties and has been widely used in practice is the raised 
cosine spectrum.

◊ Raised cosine spectrum:

◊ β: roll-off factor. (0 ≤ β≤ 1)
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◊ The bandwidth occupied by the signal beyond the Nyquist frequency 
1/2T is called the excess bandwidth and is usually expressed as a 
percentage of the Nyquist frequency.
◊ β= 1/2 => excess bandwidth = 50 %.
◊ β= 1    => excess bandwidth = 100%.

◊ The pulse x(t), having the raised cosine spectrum, is

◊ x(t) is normalized so that x(0) = 1.
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◊ Pulses having a raised cosine spectrum:

◊ Forβ= 0, the pulse reduces to x(t) = sinc(πt/T), and the symbol 
rate 1/T = 2W.

◊ When β= 1, the symbol rate is 1/T = W.
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◊ In general, the tails of x(t) decay as 1/t3 for β> 0.

◊ Consequently, a mistiming error in sampling leads to a series of 
ISI components that converges to a finite value.

◊ Because of the smooth characteristics of the raised cosine spectrum, 
it is possible to design practical filters for the transmitter and the 
receiver that approximate the overall desired frequency response.

◊ In the special case where the channel is ideal, i.e., C( f ) = 1,
| f | ≤ W, we have

where GT( f ) and GR( f ) are the frequency responses of the two 
filters.
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◊ If the receiver filter is matched to the transmitter filter, we have 
Xrc( f )= GT( f ) GR( f ) = | GT( f )|2.  Ideally,

and GR( f ) =            , where t0 is some nominal delay that is required 
to ensure physical realizability of the filter.

◊ Thus, the overall raised cosine spectral characteristic is split evenly 
between the transmitting filter and the receiving filter.

◊ An additional delay is necessary to ensure the physical realizability
of the receiving filter.
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Square Root Raised Cosine Filter
◊ The cosine roll-off transfer function can be achieved by using 

identical square root raised cosine filter                  at the transmitter 
and receiver.

◊ The pulse SRRC(t), having the square root raised cosine spectrum, is
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Design of Band-limited Signals with Controlled ISI 
-- Partial-Response Signals

◊ It is necessary to reduce the symbol rate 1/T below the Nyquist rate 
of 2W symbols/s to realize practical transmitting and receiving filters.

◊ Suppose we choose to relax the condition of zero ISI and, thus, 
achieve a symbol transmission rate of 2W symbols/s.

◊ By allowing for a controlled amount of ISI, we can achieve this 
symbol rate.

◊ The condition for zero ISI is x(nT)=0 for n≠0.
◊ Suppose that we design the band-limited signal to have controlled 

ISI at one time instant. This means that we allow one additional 
nonzero value in the samples {x(nT)}.
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◊ One special case that leads to (approximately) physically realizable 
transmitting and receiving filters is the duobinary signal pulse:

◊ Using Equation (4) in Page 17

◊ When substituted into Equation (2) in Page 17, we obtain:

30

( ) ( )
( )


 =

=
otherwise   0

1 ,0    1 n
nTx

( )
( )


 =

=
otherwise     0

1- ,0     nT
bn

( ) fTjTeTfB π2−+=

( )nTTxbn −=

( ) 2j nfT
n

n
B f b e π

∞

=−∞

= ∑

Design of Band-limited Signals with Controlled ISI 
-- Partial-Response Signals



◊ It is impossible to satisfy the above equation for 1/T>2W.
◊ For T=1/2W, we obtain

◊ Therefore, x(t) is given by:

◊ This pulse is called a duobinary signal pulse.
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◊ Time-domain and frequency-domain characteristics of a 
duobinary signal.

◊ Modified duobinary signal pulse:
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◊ The corresponding pulse x(t) is given as

◊ The spectrum is given by
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◊ Other physically realizable filter characteristics are obtained by 
selecting different values for the samples {x(n/2W)} and more than 
two nonzero samples.

◊ As we select more nonzero samples, the problem of unraveling the 
controlled ISI becomes more cumbersome and impractical.

◊ When controlled ISI is purposely introduced by selecting two or 
more nonzero samples form the set {x(n/2W)}, the class of band-
limited signal pulses are called partial-response signals:
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Data Detection for Controlled ISI
◊ Two methods for detecting the information symbols at the receiver 

when the received signal contains controlled ISI:
◊ Symbol-by-symbol detection method.

◊ Relatively easy to implement.

◊ Maximum-likelihood criterion for detecting a sequence of 
symbols.
◊ Minimizes the probability of error but is a little more complex to 

implement.

◊ The following treatment is based on PAM signals, but it is easily 
generalized to QAM and PSK.

◊ We assume that the desired spectral characteristic X( f ) for the 
partial-response signal is split evenly between the transmitting and 
receiving filters, i.e., |GT( f )|=|GR( f )|=| X( f )|1/2.
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Data Detection for Controlled ISI
◊ Symbol-by-symbol suboptimum detection

◊ For duobinary signal pulse, x(nT)=1, for n=0,1, and is zero 
otherwise.

◊ The samples at the output of the receiving filter (demodulator) 
have the form

where {Im} is the transmitted sequence of amplitudes and {vm} is 
a sequence of additive Gaussian noise samples.

◊ Consider the binary case where Im=±1, Bm takes on one of three 
possible values, namely, Bm =-2,0,2 with corresponding 
probabilities ¼, ½, ¼.
◊ If Im-1 is the detected symbol from the (m-1)th signaling
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Data Detection for Controlled ISI
◊ Symbol-by-symbol suboptimum detection

interval, its effect on Bm, the received signal in the mth
signaling interval, can be eliminated by subtraction, thus 
allowing Im to be detected.

◊ Major problem with this procedure is error propagation: if  
Im-1 is in error, its effect on Bm is not eliminated but, in fact, is 
reinforced by the incorrect subtraction.

◊ Error propagation can be avoided by precoding the data.
◊ The precoding is performed on the binary data sequence prior 

to modulation.
◊ From the data sequence {Dn}, the precoded sequence {Pn} is 

given by:

37

2,... ,1   ,      1 == − mPDP mmm

Modulo-2 subtraction



Data Detection for Controlled ISI
◊ Symbol-by-symbol suboptimum detection

◊ Set Im=-1 if Pm=0 and Im=1 if Pm=1, i.e., Im=2Pm-1.
◊ The noise-free samples at the output of the receiving filter are 

given by

◊ Since                          , it follows that the data sequence Dm is 
obtained from Bm using the relation:

◊ Consequently, if Bm=±2, then Dm=0, and if Bm=0, Dm=1.
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Data Detection for Controlled ISI
◊ Symbol-by-symbol suboptimum detection

◊ Binary signaling with duobinary pulses

◊ The extension from binary PAM to multilevel PAM signaling
◊ The M-level amplitude sequence {Im} results in a noise-free 

sequence
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Data Detection for Controlled ISI
◊ Symbol-by-symbol suboptimum detection

which has 2M-1 possible equally spaced levels.
◊ The amplitude levels are determined from the relation:

where {Pm} is the precoded sequence that is obtained from an 
M-level data sequence {Dm} according to the relation

where the possible values of the sequence {Dm} are 0, 1, 2, …, 
M-1.

◊ In the absence of noise, the samples at the output is given by:
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Data Detection for Controlled ISI
◊ Symbol-by-symbol suboptimum detection

◊ Hence

◊ Since Dm=Pm+Pm-1 (mod M), it follows that

◊ Four-level signal transmission with duobinary pulses
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Data Detection for Controlled ISI
◊ Symbol-by-symbol suboptimum detection

◊ In the case of the modified duobinary pulse, the controlled ISI is 
specified by the values x(n/2W)=-1, for n=1, x(n/2W)=1, for n=-1, 
and zero otherwise.
◊ The noise-free sampled output from the receiving filter is 

given as:

◊ Where the M-level sequence {Im} is obtained by mapping a 
precoded sequence according to 

and
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Data Detection for Controlled ISI
◊ Symbol-by-symbol suboptimum detection

◊ From these relations, it is easy to show that the detection rule 
for recovering the data sequence {Dm} from {Bm} in the 
absence of noise is

◊ The precoding of the data at the transmitter makes it possible to 
detect the received data on a symbol-by-symbol basis without 
having to look back at previously detected symbols. Thus, error 
propagation is avoided.

◊ The symbol-by-symbol detection rule is not the optimum
detection scheme for partial-response signals. Nevertheless, it is 
relatively simple to implement.

43

( )MBD mm   mod   
2
1

=



Data Detection for Controlled ISI
◊ Maximum-likelihood Sequence Detection

◊ Partial-response waveforms are signal waveforms with memory. 
This memory is conveniently represented by a trellis.

◊ The trellis for the duobinary partial-response signal for binary 
data transmission is illustrated in the following figure.

◊ The first number on the left is the new data bit and the number on the right 
is the received signal level.
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Data Detection for Controlled ISI
◊ Maximum-likelihood Sequence Detection

◊ The duobinary signal has a memory of length L=1. In general, for 
M-ary modulation, the number of trellis states is ML.

◊ The optimum maximum-likelihood sequence detector selects the 
most probable path through the trellis upon observing the 
received data sequence {ym} at the sampling instants t=mT, 
m=1,2,….

◊ The trellis search is performed by the Viterbi algorithm.
◊ For the class of partial-response signals, the received sequence 

{ym,1≤m≤N} is generally described statistically by the joint PDF 
p(yN|IN), where yN =[y1 y2 … yN]’ and IN =[I1 I2 … IN]’ and N>L.
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Data Detection for Controlled ISI
◊ Maximum-likelihood Sequence Detection

◊ When the additive noise is zero-mean Gaussian, p(yN|IN) is a 
multivariate Gaussian PDF, i.e.,

where BN =[B1 B2 … BN]’ is the mean of the vector yN and C is 
the N X N covariance matrix of yN.

◊ The ML sequence detector selects the sequence through the trellis 
that maximizes the PDF p(yN|IN).

◊ Taking the natural logarithms of p(yN|IN):
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Data Detection for Controlled ISI
◊ Maximum-likelihood Sequence Detection

◊ Given the received sequence {ym}, the data sequence {Im} that 
maximizes ln p(yN|IN) is identical to the sequence {IN} that 
minimizes (yN-BN)’C-1(yN-BN), i.e.,

◊ The metric computations in the trellis search are complicated by 
the correlation of the noise samples at the output of the matched 
filter for the partial-response signal.

◊ In the case of the duobinary signal waveform, the correlation of 
the noise sequence {vm} is over two successive signal samples.
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Data Detection for Controlled ISI
◊ Maximum-likelihood Sequence Detection

◊ Hence, vm and vm+k are correlated for k=1 and uncorrelated for 
k>1.

◊ If we isgnore the noise correlation by assuming that E(vmvm+k )=0 
for k>0, the computation can be simplified to

where 

and xk = x(kT) are the sampled values of the partial-response 
signal waveform.
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Signal Design for Channels with Distortion

◊ In this section, we perform the signal design under the condition that 
the channel distorts the transmitted signal.

◊ We assume that the channel frequency-response C( f ) is know for 
| f |≤W and that C( f )=0 for | f |>W.

◊ The filter responses GT( f ) and GR( f ) may be selected to minimize 
the error probability at the detector.

◊ The additive channel noise is assumed to be Gaussian with power 
spectral density Φnn( f ).
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◊ For the signal component at the output of the demodulator, we must 
satisfy the condition

where Xd( f ) is the desired frequency response of the casecade of the 
modulator, channel, and demodulator, and t0 is a time delay that is 
necessary to ensure the physical realizability of the modulation and 
demodulation filter.

◊ The desired frequency response Xd( f ) may be selected to yield 
either zero ISI or controlled ISI at the sampling instants.

◊ We shall consider the case of zero ISI by selecting Xd( f ) = Xrc( f ), 
where Xrc( f ) is the raised cosine spectrum with an arbitrary roll-off 
factor.
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◊ The noise at the output of the demodulation filter may be expressed 
as

where n(t) is the input to the filter.
◊ Since n(t) is zero-mean Gaussian, v(t) is zero-mean Gaussian, with a 

power spectral density

◊ For simplicity, we consider binary PAM transmission. Then, the 
sampled output of the matched filter is

where x0 is normalized to unity, Im=±d, and vm represents the noise 
term.
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◊ vm is zero-mean Gaussian with variance

◊ The error probability is given by

◊ The probability of error is minimized by maximizing the ratio d2/σ2
v .

◊ There are two possible solutions for the case in which the additive 
Gaussian noise is white so that Φnn( f )=N0/2.

◊ 1st solution: pre-compensate for the total channel distortion at the 
transmitter, so that the filter at the receiver is matched to the 
received signal.
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◊ The transmitter and receiver filters have the magnitude 
characteristics

◊ The phase characteristic of the channel frequency response C( f ) 
may also be compensated at the transmitter filter.

◊ For these filter characteristics, the average transmitted power is
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◊ Hence,

◊ The noise at the output of the receiver filter is σ2
v=N0/2 and, 

hence, the SNR at the detector is
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◊ 2nd solution: As an alternative, suppose we split the channel 
compensation equally between the transmitter and receiver filters, 
i.e.,

◊ The phase characteristic of C( f ) may also be split equally 
between the transmitter and receiver filter.

◊ The average transmitter power is
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◊ The noise variance at the output of the receiver filter is

◊ The SNR at the detector is

◊ From Equations (6) (P.54) and Equation (8), we observe that when 
we express the SNR d2/σ2

v in terms of the average transmitter power 
Pav, there is a loss incurred due to channel distortion.
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◊ In the case of the filters given by Equation (5) (P.53), the loss is

◊ In the case of the filters given by Equation (7) (P.55) , the loss is

◊ When C( f )=1 for | f |≤W, the channel is ideal and
so that no loss is incurred.

◊ When there is amplitude distortion, |C( f )|<1 for some range of 
frequencies in the band | f |≤W and there is a loss in SNR.

◊ It can be shown that the filters given by Equation (7) (P.55) result in 
the smaller SNR loss.
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