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Introduction
◊ Two types of sources: analog source and digital source.
◊ Whether a source is analog or discrete, a digital communication 

system is designed to transmit information in digital form.
◊ The output of the source must be converted to a format that can be 

transmitted digitally.
◊ This conversion of the source output to a digital form is generally 

performed by the source encoder, whose output may be assumed to 
be a sequence of binary digits.

◊ In this chapter, we treat source encoding based on mathematical 
models of information sources and provide a quantitative measure of 
the information emitted by a source.
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Mathematical Models for Information Sources

◊ The output of any information source is random.
◊ The source output is characterized in statistical terms.
◊ To construct a mathematical model for a discrete source, 

we assume that each letter in the alphabet {x1, x2, …, xL} 
has a given probability pk of occurrence.
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◊ Two mathematical models of discrete sources:
◊ If the output sequence from the source is statistically independent, 

i.e. the current output letter is statistically independent from all 
past and future outputs, then the source is said to be memoryless.  
Such a source is called a discrete memoryless source (DMS).

◊ If the discrete source output is statistically dependent, we may 
construct a mathematical model based on statistical stationarity.  
By definition, a discrete source is said to be stationary if the joint 
probabilities of two sequences of length n, say a1, a2, …, an and 
a1+m, a2+m, …, an+m, are identical for all n≥1 and  for all shifts m.  
In other words, the joint probabilities for any arbitrary length 
sequence of source outputs are invariant under a shift in the time 
origin.

5

Mathematical Models for Information Sources



◊ Consider two discrete random variables with possible outcomes xi, 
i=1,2,…, n, and yi, i=1,2,…,m.

◊ When X and Y are statistically independent, the occurrence of Y=yj
provides no information about the occurrence of X=xi.

◊ When X and Y are fully dependent such that the occurrence of Y=yj
determines the occurrence of X=xi, , the information content is 
simply that provided by the event X=xi.

◊ Mutual Information between xi and yj: the information content 
provided by the occurrence of the event Y=yj about the event X=xi, is 
defined as:
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◊ The units of I(xi,yj) are determined by the base of the logarithm, 
which is usually selected as either 2 or e.

◊ When the base of the logarithm is 2, the units of I(xi,yj) are bits.
◊ When the base is e, the units of I(xi,yj) are called nats (natural units).
◊ The information measured in nats is equal to ln2 times the 

information measured in bits since:

◊ When X and Y are statistically independent, p(xi|yj)=p(xi), I(xi,yj)=0.
◊ When X and Y are fully dependent, P(xi|yj)=1, and hence         

I(xi,yj)=-logP(xi).
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◊ Self-information of the event X=xi is defined as I(xi)=-logP(xi)≥0.
◊ Note that a high-probability event conveys less information than a 

low-probability event.
◊ If there is only a single event x with probability P(x)=1, then I(x)=0.

◊ Example: A discrete information source that emits a binary digit 
with equal probability.
◊ The information content of each output is:

◊ For a block of k binary digits, if the source is memoryless, there are 
M=2k possible k-bit blocks.  The self-information is:
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◊ The information provided by the occurrence of the event Y=yj about 
the event X=xi is identical to the information provided by the 
occurrence of the event X=xi about the event Y=yj since:

◊ Example :  X and Y are binary-valued {0,1} random variables that 
represent the input and output of a binary channel.
◊ The input symbols are equally likely.
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◊ Example (cont.):
◊ The output symbols depend on the input according to the 

conditional probability:

◊ Mutual information about X=0 and X=1, given that Y=0:
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◊ Example (cont.)
The mutual information about X=0 given that Y=0 is:

The mutual information about X=1 given that Y=0 is:

◊ If the channel is noiseless, p0=p1=0:

◊ If the channel is useless, p0=p1=0.5:
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◊ Conditional self-information is defined as:

◊ We interpret I(xi|yj) as the self-information about the event 
X=xi after having observed the event Y=yj.

◊ The mutual information between a pair of events can be 
either positive or negative, or zero since both I(xi|yj) and 
I(xi) are greater than or equal to zero.
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Average Mutual Information and Entropy

◊ Average mutual information between X and Y:

◊ I(X;Y)=0 when X and Y are statistically independent.
◊ I(X;Y)≥0.

◊ Average self-information H(X):

◊ When X represents the alphabet of possible output letters from a 
source, H(X) represents the average self-information per source 
letter, and it is called the entropy.
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◊ In the special case, in which the letter from the source are equally 
probable, P(xi)=1/n, we have:

◊ In general, H(X) ≤ log n for any given set of source letter 
probabilities.

◊ In other words, the entropy of a discrete source is a maximum when 
the output letters are equally probable.
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◊ Example : Consider a source that emits a sequence of statistically 
independent letters, where each output letter is either 0 with 
probability q or 1 with probability 1-q.
◊ The entropy of this source is:

◊ Maximum value of the
entropy function occurs at
q=0.5 where H(0.5)=1.
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◊ The average conditional self-information is called the conditional 
entropy and is defined as:

◊ H(X|Y) is the information or uncertainty in X after Y is observed.
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◊ Since I(X;Y)≥0, it follows that H(X) ≥H(X|Y), with equality if and 
only if X and Y are statistically independent.

◊ H(X|Y) can be interpreted as the average amount of (conditional self-
information) uncertainty in X after we observe Y.

◊ H(X) can be interpreted as the average amount of uncertainty (self-
information) prior to the observation.

◊ I(X;Y) is the average amount of (mutual information) uncertainty 
provided about the set X by the observation of the set Y.

◊ Since H(X) ≥H(X|Y), it is clear that conditioning on the observation 
Y does not increase the entropy.
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◊ Example: Consider the case of p0=p1=p.  Let P(X=0)=q and 
P(X=1)=1-q.
◊ The entropy is:
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◊ As in the proceeding example, when the conditional entropy H(X|Y) 
is viewed in terms of a channel whose input is X and whose output is 
Y, H(X|Y) is called the equivocation and is interpreted as the amount 
of average uncertainty remaining in X after observation of Y.
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◊ Entropy for two or more random variables:
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Information Measures for Continuous Random 
Variables

◊ If X and Y are random variables with joint PDF p(x,y) and marginal 
PDFs p(x) and p(y), the average mutual information between X and 
Y is defined as:

◊ Although the definition of the average mutual information carriers 
over to continuous random variables, the concept of self-information 
does not.

◊ The problem is that a continuous random variable requires an 
infinite number of binary digits to represent it exactly.  Hence, its 
self-information is infinite and, therefore, its entropy is also infinite.
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◊ Differential entropy of the continuous random variables X is defined 
as:

Note that this quantity does not have the physical meaning of self-
information, although it may appear to be a natural extension of the 
definition of entropy for a discrete random variable.

◊ Average conditional entropy of X given Y is defined as:

◊ Average mutual information may be expressed as:
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◊ Suppose X is discrete and has possible outcomes xi, i=1,2,…,n, and Y
is continuous and is described by its marginal PDF p(y).
◊ When X and Y are statistically dependent, we may express p(y) as:

◊ The mutual information provided about the event X= xi by the 
occurrence of the event Y=y is:

◊ The average mutual information between X and Y is:
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◊ Example:  Let X be a discrete random variable with two equally 
probable outcomes x1=A and x2=-A.
◊ Let the conditional PDFs p(y|xi), i=1,2, be Gaussian with mean xi

and variance σ2.

◊ The average mutual information is:
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◊ Consider the process of encoding the output of a source, i.e., the 
process of representing the source output by a sequence of binary 
digits.

◊ A measure of the efficiency of a source-encoding method can be 
obtained by comparing the average number of binary digits per 
output letter from the source to the entropy H(X).

◊ The discrete memoryless source (DMS) is by far the simplest model 
that can be devised for a physical model.  Few physical sources 
closely fit this idealized mathematical model.

◊ It is always more efficient to encode blocks of symbols instead of 
encoding each symbol separately.

◊ By making the block size sufficiently large, the average number of 
binary digits per output letter from the source can be made arbitrarily 
close to the entropy of the source.
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◊ Suppose that a DMS produces an output letter or symbol every τs
seconds.

◊ Each symbol is selected from a finite alphabet of symbols xi, 
i=1,2,…,L, occurring with probabilities P(xi), i=1,2,…,L.

◊ The entropy of the DMS in bits per source symbol is:

◊ The equality holds when the symbols are equally probable.
◊ The average number of bits per source symbol is H(X).
◊ The source rate in bits/s is defined as H(X)/ τs.
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◊ Fixed-length code words
◊ Consider a block encoding scheme that assigns a unique set of R

binary digits to each symbol.
◊ Since there are L possible symbols, the number of binary digits 

per symbol required for unique encoding is:

◊ The code rate R in bits per symbol is R.
◊ Since H(X)≤log2 L,  it follows that R≥H(X).

27

2

2

log            when  is a power of 2.
log 1   when  is not a power of 2.

       denotes the largest integer less than .

R L L
R L L

x x

=

= +  
  

Coding for Discrete Memoryless Sources



◊ Fixed-length code words
◊ The efficiency of the encoding for the DMS is defined as the ratio 

H(X)/R≤1.
◊ When L is a power of 2 and the source letters are equally 

probable, R=H(X).
◊ If L is not a power of 2 , but the source symbols are equally 

probable, R differs from H(X) by at most 1 bit per symbol.
◊ When log2 L>>1, the efficiency of this encoding scheme is high.
◊ When L is small, the efficiency of the fixed-length code can be 

increased by encoding a sequence of J symbols at a time.
◊ To achieve this, we need LJ unique code words.
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◊ Fixed-length code words
◊ By using sequences of N binary digits, we have 2N possible code 

words.  N ≥ J log2 L.  The minimum integer value of N required 
is                              . 

◊ The average number of bits per source symbol is N/J=R and the 
inefficiency has been reduced by approximately a factor of 1/J
relative to the symbol-by-symbol encoding.

◊ By making J sufficiently large, the efficiency of the encoding 
procedure, measured by the ratio H(X)/R=JH(X)/N, can be made 
as close to unity as desired.

◊ The above mentioned methods introduce no distortion since the 
encoding of source symbols or block of symbols into code words 
is unique. This is called noiseless.
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◊ Block coding failure (or distortion), with probability of Pe, occurs 
when the encoding process is not unique.

◊ Source coding theorem I: (by Shannon)
◊ Let X be the ensemble of letters from a DMS with finite entropy 

H(X).
◊ Blocks of J symbols from the source are encoded into code words 

of length N from a binary alphabet.
◊ For anyε>0, the probability Pe of a block decoding failure can be 

made arbitrarily small if J is sufficiently large and

◊ Conversely, if R≤H(X)-ε, Pe becomes arbitrarily close to 1 as J is 
sufficiently large.
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◊ Variable-length code words
◊ When the source symbols are not equally probable, a more 

efficient encoding method is to use variable-length code words.
◊ In the Morse code, the letters that occur more frequently are 

assigned short code words and those that occur infrequently are 
assigned long code words.

◊ Entropy coding devises a method for selecting and assigning the 
code words to source letters.
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◊ Variable-length code words

◊ Code I is not uniquely decodable. (Eg: 1001:1,00,1;10,01)
◊ Code II is uniquely decodable and instantaneously decodable.

◊ Digit 0 indicates the end of a code word and no code word is longer 
than three binary digits.

◊ Prefix condition: no code word of length l<k that is identical to the 
first l binary digits of another code word of length k>l.
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Letter P(ak) Code I Code II Code III

a1 1/2 1 0 0
a2 1/4 00 10 01

a3 1/8 01 110 011
a4 1/8 10 111 111
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◊ Variable-length code words
◊ Code III has a tree structure:

◊ The code is uniquely decodable.
◊ The code is not instantaneously decodable.
◊ This code does not satisfy the prefix condition.

◊ Objective: devise a systematic procedure for constructing 
uniquely decodable variable-length codes that minimizes:
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◊ Kraft inequality
◊ A necessary and sufficient condition for the existence of a binary 

code with code words having lengths n1≤n2≤…≤nL that satisfy 
the prefix condition is

◊ Proof of sufficient condition:
◊ Consider a code tree that is

embedded in the full tree of
2n (n=nL) nodes.
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◊ Kraft inequality
◊ Proof of sufficient condition (cont.)

◊ Let’s select any node of order n1 as the first code word C1.  This choice 
eliminates 2 n-n1 terminal nodes (or the fraction 2-n1 of the 2n terminal 
nodes).

◊ From the remaining available nodes of order n2, we select one node for the 
second code word C2.  This choice eliminates 2 n-n2 terminal nodes.

◊ This process continues until the last code word is assigned at terminal 
node L.

◊ At the node j<L, the fraction of the number of terminal nodes eliminated is:

◊ At node j<L, there is always a node k>j available to be assigned to the next 
code word.  Thus, we have constructed a code tree that is embedded in the 
full tree. Q.E.D.
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◊ Kraft inequality
◊ Proof of necessary condition

◊ In code tree of order n=nL, the number of terminal nodes eliminated from 
the total number of 2n terminal nodes is:

◊ Source coding theorem II
◊ Let X be the ensemble of letters from a DMS with finite entropy 

H(X) and output letters xk, 1≤k≤L, with corresponding 
probabilities of occurrence pk, 1≤k≤L.  It is possible to construct a 
code that satisfies the prefix condition and has an average length

that satisfies the inequalities:
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◊ Source coding theorem II (cont.)
◊ Proof of lower bound:
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◊ Source coding theorem II (cont.)
◊ Proof of upper bound:

◊ The upper bound may be established under the constraint that 
nk, 1≤ k ≤L, are integers, by selecting the {nk} such that 

.
◊ If the terms               are summed over 1≤ k ≤L, we obtain the 

Kraft inequality, for which we have demonstrated that there 
exists a code that satisfies the prefix condition.

◊ On the other hand, if we take the logarithm of                  , we 
obtain                                                           .

◊ If we multiply both sides by pk and sum over 1≤ k ≤L, we 
obtain the desired upper bound.
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◊ Huffman coding algorithm
1. The source symbols are listed in order of decreasing probability.  

The two source symbols of lowest probability are assigned a 0 
and a 1.

2. These two source symbols are regarded as being combined into 
a new source symbol with probability equal to the sum of the 
two original probabilities.  The probability of the new symbol is 
placed in the list in accordance with its value.

3. The procedure is repeated until we are left with a final list of 
source statistics of only two for which a 0 and a 1 are assigned.

4. The code for each (original) source symbol is found by working 
backward and tracing the sequence of 0s and 1s assigned to that 
symbol as well as its successors.
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40

Symbol
S0
S1
S2
S3
S4

Probability
0.4
0.2
0.2
0.1
0.1

Code Word
00
10
11

010
011

Symbol

S0
S1
S2
S3
S4

Stage 1

0.4
0.2
0.2
0.1
0.1

Stage 2

0.4
0.2
0.2
0.2

Stage 3

0.4
0.4
0.2

Stage 4

0.6
0.4

0

1

0

1

0

1

0

1
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◊ Huffman coding algorithm
◊ Example
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◊ Huffman coding algorithm
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◊ Huffman coding algorithm
◊ Example 
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◊ Huffman coding algorithm
◊ This algorithm is optimum in the sense that the average number 

of binary digits required to represent the source symbols is a 
minimum, subject to the constraint that the code words satisfy the 
prefix condition, which allows the received sequence to be 
uniquely and instantaneously decodable.

◊ Huffman encoding process is not unique.
◊ Code words for different Huffman encoding process can have 

different lengths.  However, the average code-word length is the 
same.

◊ When a combined symbol is moved as high as possible, the 
resulting Huffman code has a significantly smaller variance than 
when it is moved as low as possible.
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◊ Huffman coding algorithm
◊ The variable-length encoding (Huffman) algorithm described in 

the above mentioned examples generates a prefix code having an
that satisfies:

◊ A more efficient procedure is to encode blocks of J symbols at a 
time.  In such a case, the bounds of source coding theorem II 
become:

◊ can be made as close to H(X) as desired by selecting J 
sufficiently large.

◊ To design a Huffman code for a DMS, we need to know the 
probabilities of occurrence of all the source letters.

45

( ) ( ) 1H X R H X≤ < +
R

( ) ( ) ( ) ( ) 11    J
J

RJH X R JH X H X R H X
J J

≤ < + ⇒ ≤ ≡ < +

R

Coding for Discrete Memoryless Sources



◊ Huffman coding algorithm
◊ Example
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◊ Huffman coding algorithm
◊ Example 
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Discrete Stationary Sources
◊ We consider discrete sources for which the sequence of output 

letters is statistically dependent and statistically stationary.
◊ The entropy of a block of random variables X1X2…Xk is:

◊ H(Xi|X1X2…Xi-1) is the conditional entropy of the ith symbol from 
the source given the previous i-1 symbols.

◊ The entropy per letter for the k-symbol block is defined as

◊ Information content of a stationary source is defined as the entropy 
per letter in the limit as k→∞.
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◊ The entropy per letter from the source can be defined in terms of the 
conditional entropy H(Xk|X1X2…Xk-1) in the limit as k approaches 
infinity.

◊ For a discrete stationary source that emits J letters with HJ(X) as the 
entropy per letter.

◊ In the limit as J→∞, we have:

( ) ( )1 2 1lim | ...k kk
H X H X X X X∞ −→∞

=

( ) ( )1 1... ... 1JJ JH X X R H X X≤ < +
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( ) ( ) 1J
J J
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J J

≤ ≡ < +
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The Lempel-Ziv Algorithm
◊ For Huffman Coding, except for the estimation of the marginal 

probabilities {pk}, corresponding to the frequency of occurrence of 
the individual source output letters, the computational complexity 
involved in estimating joint probabilities is extremely high.

◊ The application of the Huffman coding method to source coding for 
many real sources with memory is generally impractical.

◊ The Lempel-Ziv source coding algorithm is designed to be 
independent of the source statistics.

◊ It belongs to the class of universal source coding algorithms.
◊ It is a variable-to-fixed-length algorithm.

50



The Lempel-Ziv Algorithm
◊ Operation of Lempel-Ziv algorithm

1. The sequence at the output of the discrete source is parsed into 
variable-length blocks, which are called phrases.

2. A new phrase is introduced every time a block of letters from 
the source differs from some previous phrase in the last letter.

3. The phrases are listed in a dictionary, which stores the location 
of the existing phrases.

4. In encoding a new phrase, we simply specify the location of the 
existing phrase in the dictionary and append the new letter.

◊ 10101101001001110101000011001110101100011011
◊ 1,0,10,11,01,00,100,111,010,1000,011,001,110,101,10001,1011
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The Lempel-Ziv Algorithm
◊ Operation of Lempel-Ziv algorithm (cont.)

◊ To encode the phrases, we construct a dictionary:
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The Lempel-Ziv Algorithm
◊ Operation of Lempel-Ziv algorithm (cont.)

5. The code words are determined by listing the dictionary 
location (in binary form) of the previous phrase that matches the 
new phrase in all but the last location.

6. The new output letter is appended to the dictionary location of 
the previous phrase.

7. The location 0000 is used to encode a phrase that has not 
appeared previously.

8. The source decoder for the code constructs an identical copy of 
the dictionary at the receiving end of the communication system 
and decodes the received sequence in step with the transmitted 
data sequence.
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The Lempel-Ziv Algorithm
◊ Operation of Lempel-Ziv algorithm (cont.)

◊ As the sequence is increased in length, the encoding procedure 
becomes more efficient and results in a compressed sequence at 
the output of the source.

◊ No matter how large the table is, it will eventually overflow.
◊ To solve the overflow problem, the source encoder and decoder 

must use an identical procedure to remove phrases from the 
dictionaries that are not useful and substitute new phrases in their 
place.

◊ Lempel-Ziv algorithm is widely used in the compression of 
computer files.
◊ E.g. “compress” and “uncompress” utilities under the UNIX© OS.

54



Channel Models

◊ Binary symmetric channel (BSC)
◊ If the channel noise and other disturbances cause statistically 

independent errors in the transmitted binary sequence with 
average probability p, then
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Channel Models

◊ Discrete memoryless channels (DMC)
◊ BSC is a special case of a more general discrete-input, discrete-

output channel.
◊ Output symbols from the channel encoder are q-ary symbols, i.e., 

X={x0, x1,…, xq-1}.
◊ Output of the detector consists of Q-ary symbols, where Q≥M=2q.
◊ If the channel and modulation are memoryless, we have a set of 

qQ conditional probabilities:

where i=0,1,…,Q-1 and j=0,1,…,q-1.
◊ Such a channel is called a discrete memoryless channel (DMC).
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Channel Models

◊ Discrete memoryless channels (DMC)
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 Input u1,u2,…,un

 Output: v1,v2,…,vn

 The conditional probability is given 
by:

 In general, the conditional 
probabilities P(yj|xi) can be arranged 
in the matrix form P=[pij], called 
probability transition matrix.
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Channel Models

◊ Discrete-input, continuous-output channel
◊ Discrete input alphabet X={x0,x1,…,xq-1}.
◊ Output of the detector is unquantized (Q=∞).
◊ The most important channel of this type is the additive white 

Gaussian noise (AWGN) channel, for which

where G is a zeor-mean Gaussian random variable with variance 
σ2 and X=xk, k=0,1,…,q-1.

◊
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Channel Models

◊ Waveform channels
◊ Assume that a channel has a given bandwidth W, with ideal 

frequency response C( f )=1 within the bandwidth W, and the 
signal at its output is corrupted by AWGN: y(t)=x(t)+n(t).

◊ Expand y(t), x(t), and n(t) into a complete set of orthonormal
functions:
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Channel Models

◊ Waveform channels
◊ Since yi=xi+ni, it follows that:

◊ Since the functions {fi(t)} are orthonormal, it follows that the {ni} 
are uncorrelated.

◊ Since they are Gaussian, they are also statistically independent:

◊ Samples of x(t) and y(t) may be taken at the Nyquist rate of 2W
samples per second. Thus, in a time interval of length T, there are 
N=2WT samples.

60

( ) ( )
2,... ,1         ,

2
1|

22
2 ==

−−

iexyp i
ixiy

i
ii

σ

σπ

( ) ( )∏
=

=
N

i
iiNN xypxxxyyyp

1
2121 | ,..., ,| ..., , ,



Channel Capacity

◊ Consider a DMC having an input alphabet X={x0,x1,…,    
xq-1}, an output alphabet Y={y0, y1, …, yQ-1}, and the set of 
transition probabilities P(yi,xj).

◊ The mutual information provided about the event X=xj by 
the occurrence of the event Y=yi is log[P(yi|xj)/P(yi)], 
where

◊ Hence, the average mutual information provided by the 
output Y about the input X is:
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Channel Capacity

◊ The value of I(X;Y) maximized over the set of input 
symbol probabilities P(xj) is a quantity that depends only 
on the characteristics of the DMC through the conditional 
probabilities P(yi|xj). This quantity is called the capacity of 
the channel and is denoted by C:

◊ The maximization of I(X;Y) is performed under the 
constraints that
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Channel Capacity
◊ Example: BSC with transition probabilities P(0|1)=P(1|0)=p.

◊ The average mutual information is maximized when the input 
probabilities P(0)=P(1)=½.

◊ The capacity of the BSC is

where H(p) is the binary entropy function.
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Channel Capacity

◊ Consider the discrete-time AWGN memoryless channel 
described by

◊ The capacity of this channel in bits per channel use is the 
maximum average mutual information between the 
discrete input X={x0,x1,…,xq-1} and the output Y={∞,-∞}:

where
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Channel Capacity
◊ Example: Consider a binary-input 

AWGN memoryless channel with 
possible inputs X=A and X=-A.
◊ The average mutual information 

I(X;Y) is maximized when the 
input probabilities are 
P(X=A)=P(X=-A)=½.
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Channel Capacity
◊ It is not always the case to obtain the channel capacity by assuming 

that the input symbols are equally probable.
◊ Nothing can be said in general about the input probability 

assignment that maximizes the average mutual information.
◊ It can be shown that the necessary and sufficient conditions for the 

set of input probabilities {P(xj)} to maximize I(X;Y) and to achieve 
capacity on a DMC are:

where C is the capacity of the channel and
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Channel Capacity
◊ Consider a band-limited waveform channel with AWGN.
◊ The capacity of the channel per unit time has been defined by 

Shannon (1948) as

◊ Alternatively, we may use the samples or the coefficients {yi}, {xi}, 
and {ni} in the series expansions of y(t), x(t), and n(t) to determine 
the average mutual information between xN=[x1 x2 … xN] and yN=[y1
y2 … yN], where N=2WT, yi = xi + ni.
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Channel Capacity
where

◊ The maximum of I(X;Y) over the input PDFs p(xi) is obtained 
when the {xi} are statistically independent zero-mean Gaussian 
random variables, i.e.,

◊ From (*) in P.67
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Channel Capacity
◊ If we put a constraint on the average power in x(t), i.e.,

◊ Dividing both sides by T and we can obtain the capacity of the band-
limited AWGN waveform channel with a band-limited and average 
power-limited input:
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Channel Capacity

◊ Normalized channel capacity 
as a function of SNR for band-
limited AWGN channel
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◊ Channel capacity as a function 
of bandwidth with a fixed 
transmitted average power



Channel Capacity
◊ Note that as W approaches infinity, the capacity of the channel 

approaches the asymptotic value

◊ Since Pav represents the average transmitted power and C is the rate 
in bits/s, it follows that

◊ Hence, we have

◊ Consequently
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Channel Capacity

◊ When C/W=1, εb/N0=1 (0 dB).

◊ When C/W→∞,

◊ When C/W→0
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Channel Capacity

◊ The channel capacity formulas serve as upper limits on the 
transmission rate for reliable communication over a noisy 
channel.

◊ Noisy channel coding theorem by Shannon (1948)
◊ There exist channel codes (and decoders) that make it 

possible to achieve reliable communication, with as 
small an error probability as desired, if the transmission 
rate R<C, where C is the channel capacity. If R>C, it is 
not possible to make the probability of error tend 
toward zero with any code.
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