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o We assume that the transmitter sends digital information by use of
M signals waveforms {s..(t)=1,2,---,M }. Each waveform is
transmitted within the symbol interval of duration T, i.e. O<t<T.

o The channel is assumed to corrupt the signal by the addition of white
Gaussian noise, as shown in the following figure:

Channel
I'ransmitted

signal —;....® e Received
(1) = 5,,(7) +n(2)

S0 (£) T

Noise

()

rit)=s, (t)+n(), 0<t<T

where n(t) denotes a sample function of AWGN process with power
spectral density @ .( f )=%N, W/Hz.
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o Our object Is to design a receiver that Is optimum in the sense that it

minimizes the probability of making an error.

o Itis convenient to subdivide the receiver into two parts—the signal
demodulator and the detector.

Received i Outit
> Signa —»  Detector p
signal () demodulator decision

o The function of the signal demodulator is to convert the received waveform r(t)

Into an N-dimensional vector r=[r, r, ..---ry] where N is the dimension of the
transmitted signal waveform.

o The function of the detector is to decide which of the M possible signal
waveforms was transmitted based on the vector r.
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o Two realizations of the signal demodulator are described in the i

following section:
o One Is based on the use of signal correlators.
o The second is based on the use of matched filters.

o The optimum detector that follows the signal demodulator is
designed to minimize the probability of error.




Correlation Demodulator e

We describe a correlation demodulation that decomposes the
receiver signal and the noise into N-dimensional vectors.

In other words, the signal and the noise are expanded into a series of
linearly weighted orthonormal basis functions {f,(t)}.

It is assumed that the N basis function {f .(t)} span the signal space,
so every one of the possible transmitted signals of the set
{s,,(t)=1<m<M } can be represented as a linear combination of

(D)}

In case of the noise, the function {f (t)} do not span the noise space.
However we show below that the noise terms that fall outside the
signal space are irrelevant to the detection of the signal.



Correlation Demodulator

(a7

o Suppose the receiver signal r(t) is passed through a parallel banﬁ of

N basis functions {f ,(t)}, as shown in the following figure:
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> To detector

S

= SO, Mt
n, = joT n(0) f. (t)dt ,

k=12,....

k=12,

o The signal is now represented by the vector s, with components s
k=1,2,---N. Their values depend on which of the M signals was

transmitted.
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o In fact, we can express the receiver 3|gnal r(t) in the interval 0 <z <
T as: ,
r(t) = Zsmk fi, (D) + Z n, T, (£) +n'(t)
k=1 k=1
N
= Z r f, () +n'(t)
k=1

o The term n'(t), defined as
N
n'(t) =n(t)- . n f, (1)
k=1

IS a zero-mean Gaussian noise process that represents the difference
between original noise process n(t) and the part corresponding to the
projection of n(t) onto the basis functions {f,(t)}.
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o We shall show below that n'(t) is irrelevant to the decision as to
which signal was transmitted. Consequently, the decision may be

based entirely on the correlator output signal and noise components
rk:Smk'l'nk, k:1,2,"°,N.

o The noise components {n,} are Gaussian and mean values are:

.
E(n, )ZI E [n(t)] f (t)dt=0 foralln. | Power spectral density

and their covariances are: I8 @y (1)=YeNy WIHZ
--------- Autocorrelation.- _
E(nn )= j j E[n(t)n(r)]f (t)f (Z’)dtdl’ Conclusion: The N noise
-------- Components {n,} are
_~N St~ f t) f dtd zero-mean uncorrelated
0Jo J.o ( T) (O T, (r)dtdz Gaussian random

1 T 1 variables with a common
= No | T ()T, (t)dt= > Noom« | variance 6,2=%N,.
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o From the above development, it follows that the correlator output {rk}
conditioned on the mth signal being transmitted are Gaussian
random variables with mean

E(r) =E(Sm +N) =S

and equal variance
2 2 1
O, =0, =7 NO
2

o Since the noise components {n,} are uncorrelated Gaussian random
variables, they are also statistically independent. As a conseqguence,
the correlator outputs {r,} conditioned on the mth signal being
transmitted are statistically independent Gaussian variables.
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o The conditional probability density functions of the random

variables r=[r, r, --- r] are:

p(rISm)=H P ISw),  mM=12...M  -—(A)

exp{—(rk _Nsmk)z] k=12,...,N --(B)

P(E [$1) = —
k mk \/7Z'N70
By substituting Equation (B) into Equation (A), we obtain the joint
conditional PDFs

N

1 (rk_s k)2
ris_ ) = exp| — m , m=12,.... M
)= G '{; N,

12



®

Correlation Demodulator e

o The correlator outputs (r, r,, --- ry) are sufficient statistics for

reaching a decision on which of the M signals was transmitted, i.e.,
no additional relevant information can be extracted from the
remaining noise process n'(t).

o Indeed, n'(t) is uncorrelated with the N correlator outputs {r,}:

Vo

E[n'(t)r |=E[n'(t)]s. +E[n"(On]=E[n"(t)n ] = E{n(t) —ZN:nj f (t)} n,

= [ E[n®n(@)]f, (r)dr—ZN: E(mn)f () [n =] n(t)f, Ot

J=1

T1 51
:J-O 5 NO5(t—f) f (T)dr—za Nod; T (1)

1 1
:ENO fk(t)_ENO f(t)=0 Q.E.D.
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o Since n' (t) and {r,} are Gaussian and uncorrelated, they are also
statistically independent.

o Consequently, n'(t) does not contain any information that is relevant
to the decision as to which signal waveform was transmitted.

o All the relevant information is contained in the correlator outputs {r,}
and, hence, n'(t) can be ignored.
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o Example.

o Consider an M-ary baseband PAM signal set in which the basic
pulse shape g(t) is rectangular as shown in following figure.

o The additive noise Is a zero-mean white Gaussian noise process.

o Let us determine the basis function f(t) and the output of the
correlation-type demodulator.

o The energy In the rectangular pulse is

(1)

T T
€ =] g’Mdt=] a’dt=a’T {
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o Example.(cont.)

o Since the PAM signal set has dimension N=1, there is only one
basis function f(t) given as:

1 _JYNT o (0<t<T)
f(t) = \/aTT 9(t) = {0 (otherwise)

o The output of the correlation-type gemodulator IS:
T T
r= jo r(t) f (t)dt :FL r(t)dt

o The correlator becomes a simple integrator when f(t) is
rectangular: if we substitute for r(t), we obtain:

[ s, ®+n@®] } dt:%[

0

. =%{ [s,@dt+] n(t)dt}

=s_+n

16
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o Example.(cont.)
o The noise term E(n)=0 and:

or=E[n(t)n(t) |= E{%IOT jOT n(t)n(r)dtdr}

:Ti [ ], E[n®n(2)]dtdz :% [ ], 5t-7)dtd

_ N, T1-dT:£N0
2T Jo 2

o The probability density function for the sampled output is:

p(r|s,) = TlN exp{— (r_NS”‘)}

17
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o Instead of using a bank of N correlators to generate the variables
{r.}, we may use a bank of N linear filters. To be specific, let us
suppose that the impulse responses of the N filters are:

h(@t)=f (T-t), O0<t<T

where {f,(t)} are the N basis functions and h,(t)=0 outside of the
Interval 0 <t<T.

o The outputs of these filters are :

y, (t)=r(t)=h, (t)
- [‘r()h, (t-7)dr

J0

=| r(z)f (T —-t+7)dr, k=12,....,N

J0

—t

18
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o |If we sample the outputs of the filters att = T, we obtain
yk(T)=IOTF(T)fk(r)dr=r : k=12,.....,N

o A filter whose impulse response h(t) = s(T - t) , where s(t) is
assumed to be confined to the time interval 0 <t < T, Is called
matched filter to the signal s(t).

o An example of a signal and its matched filter are shown in the
following figure.

s(r) h(t) =s(T — 1)
- .
0 R - O A !
(a) Signal s (7) (H) Impulse response

of filter matched to s(¢)
19
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o The response of h(t) = s(T - t) to the signal s(t) Is:

y(t) = S(t)* h(t) = L: S(r)h(t —Z')dT = j()t S(7)s(T —t+7)dr
which is the time-autocorrelation function of the signal s(t).

o Note that the autocorrelation function y(t) is an even function of t ,
which attains a peak at t=T.

A v =l s@s(T—t+1)dt
()

20
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o Matched filter demodulator that generates the observed variables {r,}

L]
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S GFE=—=i1) ——.(O_' S
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Received O — 1) 4.1;13___‘__
signal :
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]
i
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e !
1
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i
|
v {( J "N
:
Sample
attr= T
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o Properties of the matched filter.

o If asignal s(t) is corrupted by AWGN, the filter with an impulse
response matched to s(t) maximizes the output signal-to-noise

ratio (SNR).
o Proof:

o Let us assume the receiver signal r(t) consists of thelsignal s(t)
and AWGN n(t) which has zero-mean and @, ( f) =3 N, W/Hz.

o Suppose the signal r(t) Is passed through a filter with impulse
response h(t), O<t<T, and its output is sampled at time t=T.
The output signal of the filter is:

y(D) = () *h(t) = [ r()h(t-7)dz
— j; s(z)h(t—7)dz + I; n(z)h(t—7)dr

22
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o Proof: (cont.)

o At the sampling instant t=T:
y(T) = [ s(@h(T ~2)dz+[ n()h(T -7)dz

=Y, (T)+ Y, (T)
o This problem is to select the filter impulse response that
maximizes the output SNR, defined as:

Y, (T)

E[ys(T)]
E[y:M]=[ [ E[n@n®]h(T -)h(T ~t)dtd-

B 1 T T B 1 T,
_ENOJO | 8(t=7)h(T —2)h(T —t)dtdz —ENOL h? (T —t)dt

SNR, =

23
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o Proof: (cont.)

> By substituting for y, (T) and E| yZ(T)| into SNR,,

v =l=%
"s@hT -2z | [ [The)s —eyde]
SNRO:UO s(r)(T ~7)dr | :Uol ()s(T ~)de |
%NOJOT h? (T —t)dt ENO_[OT h? (T —t)dt

o Denominator of the SNR depends on the energy in h(t).

o The maximum output SNR over h(t) is obtained by
maximizing the numerator subject to the constraint that the
denominator is held constant.

24
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o Proof: (cont.)

o Cauchy-Schwarz inequality: if g,(t) and g,(t) are finite-energy
signals, then

U_z 9,(t)9, (t)dt]2 < f; g7 (t)dt f; g2 (t)dt

with equality when g,(t)=Cg,(t) for any arbitrary constant C.

o If we set g,(t)=h,(t) and g,(t)=s(T—-t), it is clear that the SNR is
maximized when h(t)=Cs(T - t).

25
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o Proof: (cont.)

o The output (maximum) SNR obtained with the matched filter
IS:

[ [T s@)h(r —r)drT [ [T s@)Cs(T (T —r))drT

SNR, = ~7—— =
—Noj N*(T—0)dt N, C**(T —(T —t))d

= j (t)dt——

O

o Note that the output SNR from the matched filter depends on
the energy of the waveform s(t) but not on the detailed
characteristics of s(t).

26
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o Freguency-domain interpretation of the matched filter
o Since h(t)=s(T - t), the Fourier transform of this relationship is:

H(f)= jOT S(T —t)e 2 "dt  let z=T -t

_ D‘OT S(z_)ejzﬂffdz_} o-i2rfT _ S*( f )e—j27sz

o The matched filter has a frequency response that is the complex
conjugate of the transmitted signal spectrum multiplied by the
phase factor eJ12T (sampling delay of T).

o In other worlds, |H( f)|=|S( f )|, so that the magnitude response of
the matched filter is identical to the transmitted signal spectrum.

o On the other hand, the phase of H( f) is the negative of the phase
of S(f).

27
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o Freguency-domain interpretation of the matched filter

o If the signal s(t) with spectrum S( f) is passed through the
matched filter, the filter output has a spectrum

Y(f)=|S(f)|2ed2T,  s(f)-S"(f)e "
o The output waveform is:
y. (t) = J‘_OO Y (f)el2df :J'_OO ‘S(f)‘z o~ i2rfT gj2nftye

o By sampling the output of the matched filter at t = T, we obtain
(from Parseval’s relation):

v, (M) =["|s(F)fdf = [ s*(hydt=¢

o The noise at the output of the matched filter has a power spectral
density (See Chapter 2, Page 109)

@y(1)=2]H(F)N,

28
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o Freguency-domain interpretation of the matched filter

o The total noise power at the output of the matched filter is

P=[ @(f)df
1. 1. 1
=N [ [H(Odf =~ N[ [s(F)fdf =~ &N,

o The output SNR is simply the ratio of the signal power P, given
by P, = y?(T), to the noise power P,..

2
SNR():ES: & 2

29
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o Example:

o M=4 biorthogonal signals are constructed from the two
orthogonal signals shown in the following figure for transmitting
Information over an AWGN channel. The noise is assumed to
have a zero-mean and power spectral density % N,

1) A Fo(2) A
2 2 L
T N'/;
1 1 e — L —
o 1 7 3 Tz 0 1 v 3 T
57 57T > >7
()
() =500 — D A Fs(2) = /(T — ) A
2 L 2
T 7
O 1 T 3 Tz 3] 1 7T 3 T
T 5% 5 2t
H)
Vis(F) A Vo, (2) A
i G i 1 > |
el L /\ >A~T
1 R — 1 1 e —
0 1 T 3 r 0 1 T 3 . P
2% 2% 7 57

(€=
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o Example: (cont.)
o The M=4 biorthogonal signals have dimensions N=2 (shown in

fi ;
'gurea) fl(t):{\/ZTT (OStg%T)

0 (otherwise)
1
() = \2/T (ET <t<T)
0 (otherwise)
o The impulse responses of the two matched filters are (figure b):

1
B0 = (T -1 ={J2/7T GT=t<T)

0 (otherwise)

2/T  (0<t< %T)
0 (otherwise)

31
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o Example: (cont.)

o If sy (1) Is transmitted, the responses of the two matched filters are
as shown in figure c, where the signal amplitude is A.

o Since y,(t) and y,(t) are sampled at t=T, we observe that

Yis(T)=, /% a5 Yas(T)=0.

o From equation Page 28, we have %A?T=¢ and the received vector
IS:
r=|r, rz]:[\/ng n, nz}

where n,(t)=y,,(T) and n,=y, (T) are the noise components at the
outputs of the matched filters, given by

VoM =[ n®)f dt, K

32
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o Example: (cont.)
o Clearly, E(n,)=E]y,,(T)] and their variance is

or =Elytm]=[ [, EhOn@] 0, ()dtdr

1 oT T

=N, jo st-7)f (r)f, (t)dtdr
1 T 1

:ENO-O sz(t)dtZENO

o Observe that the SNR, for the first matched filter is

\@)2_25
1. N
PR

33
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o Example: (cont.)
o This result agrees with our previous result.

o We can also note that the four possible outputs of the two
matched filters, corresponding to the four possible
transmitted signals are:

(rl,rz):(\/Z+nl,nz),(nl,\/g+n2),(—\/2+nl,nz)and (nl,—\/2+n2)

34
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Our goal Is to design a signal detector that makes a decision on 1 the

transmitted signal in each signal interval based on the observation of
the vector r in each interval such that the probability of a correct
decision Is maximized.

We assume that there is no memory in signals transmitted in
successive signal intervals.

We consider a decision rule based on the computation of the
posterior probabilities defined as

P(s,|r)=P(signal s, was transmitted|r), m=1,2,---,M.

The decision criterion is based on selecting the signal corresponding
to the maximum of the set of posterior probabilities { P(s.,|r)}. This
decision criterion is called the maximum a posterior probability
(MAP) criterion.
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Using Bayes’ rule, the posterior probabilities may be expressed as
r{s.)P(s
P(s. |r) = p(r[s,)P(sy) (A
p(r)
where P(s,,) IS the a priori probability of the mth signal being
transmitted.

The denominator of (A), which is independent of which signal is
transmitted, may be expressed as

p(r)=Z_ p(r|s,)P(s,)

Some simplification occurs in the MAP criterion when the M signal
are equally probable a priori, i.e., P(s,)=1/M.

The decision rule based on finding the signal that maximizes P(s,|r)
IS equivalent to finding the signal that maximizes P(r|s,,).

36
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The conditional PDF P(r|s,) or any monotonic function of it is

usually called the likelihood function.

The decision criterion based on the maximum of P(r|s,) over the M
signals Is called maximum-likelihood (ML) criterion.

We observe that a detector based on the MAP criterion and one that
IS based on the ML criterion make the same decisions as long as a
priori probabilities P(s,) are all equal.

In the case of an AWGN channel, the likelihood function p(r|s,,) IS
given by:

_ 1 . N (rk_smk)2 _
p(r|sm)—(7z|\|0)N/2 exp{ Z } m=12,....,M
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The maximum of In p(r|s,,) over s, Is equivalent to finding the signal
s, that minimizes the Euclidean dlstance.

N
D(r,s,,) = D (h —Sw)’
k=1
We called D(r,s,,), m=1,2,---,M, the distance metrics.

Hence, for the AWGN channel, the decision rule based on the ML
criterion reduces to finding the signal s that is closest in distance to
the receiver signal vector r.

We shall refer to this decision rule as minimum distance detection.

38
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Expanding the distance metrics:

N N N
D(r,s,) =D 17 =2> 1S, +> s
n=1 n=1 n=1

=|IF[* —2r-s, +[s.| » M=12,.cc, M
The term || r|]> is common to all distance metrics, and, hence, it may
be ignored in the computations of the metrics.
The result is a set of modified distance metrics.
D'(r,8,) = —2r S, + S
Note that selecting the signal s that minimizes D'(r, s.,) IS

equivalent to selecting the signal that maximizes the metrics
C(r, s,)= - D'(r, s),

C(r,s,)=2r-s,_ —HsmH2

39
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The term r-s., represents the projection of the signal vector onto each
of the M possible transmitted signal vectors.

The value of each of these projection is a measure of the correlation
between the receiver vector and the mth signal. For this reason, we
call C(r, s,,), m=1,2,---,M, the correlation metrics for deciding

which of the M signals was transmitted.

Finally, the terms || S|

2=¢  m=1,2,---,M, may be viewed as bias

terms that serve as compensation for signal sets that have unequal

energies.

If all signals have the same energy, || s,,/[* may also be ignored.

Correlation metrics can be expressed as:

C(r.s,)=2[ r(t)s, (hdt-& ., m

40
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o These metrics can be generated by a demodulator that cross-
correlates the received signal r(t) with each of the M possible
transmitted signals and adjusts each correlator output for the bias in
the case of unequal signal energies.

Sl(f) % gl
. ¥
—»(é—» JoOde|—"1—(G)—
I
NG, | 3 &
i T
I
Received : ; Sfl_lle(:t Output
- 1 e o
signal »(¥) ! largest decision
|
I
I
: : 1
Sar(2) | > Enr
v i v
I Ay
—>-®—>— j'g( ) dt /:I >®—+
i
I
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We have demonstrated that the optimum ML detector computes a set

of M distances D(r,s,,) or D'(r,s,,) and selects the signal
corresponding to the smallest (distance) metric.

Equivalently, the optimum ML detector computes a set of M
correlation metrics C(r, s,,) and selects the signal corresponding to
the largest correlation metric.

The above development for the optimum detector treated the
Important case in which all signals are equal probable. In this case,
the MAP criterion is equivalent to the ML criterion.

When the signals are not equally probable, the optimum MAP
detector bases its decision on the probabilities given by:

P(s, |r)= p(rllsorzi)P(sm) or PM(r,s,)=p(rls,)P(sn)

42
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o Example:

o Consider the case of binary PAM signals in which the two
possible signal points are s, = —s, =/, , Where g, Is the energy
per bit. The priori probabilities are P(s,)=p and P(s,)=1-p. Let
us determine the metrics for the optimum MAP detector when the
transmitted signal is corrupted with AWGN.

o The receiver signal vector for binary PAM is:

r=+/&, +y, ()

where y,.(T) Is a zero mean Gaussian random variable with

variance o’ = % N, -

43
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o Example: (cont.)
o The conditional PDF P(rls,) for two signals are

(-J&)
20°

1
p(r | Sl) — \/EG eEXPp

1  (r+JE)
r|s,) = exp| —
p(r|s,) Vono. p 207
o Then the metrics PM(r,s,) and PM(r,s,) are

—JE Y
PM (risl): p'p(r|51):\/£(7 eXp{ (r 2\(/7;)

n

_(1-p). _1-p | (/&)
PM(r,s,)=(1-p) |0(rlsz)—chyn exp 207
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o Example: (cont.)

o If PM(r,s;) > PM(r,s,), we select s, as the transmitted signal:
otherwise, we select s,. This decision rule may be expressed as:

PM(r,s;) * 1
PM(r,s,) =

PM(r,s)  p '(r+ﬁ)2—(r—ﬁ)2'

= exp
PM(r,s,) 1-p o
(r+4&,)" = (r- F)Ziam
Gn S, p

/gbr - Egﬁml__p:ENOml__p
o 2 p 4 p
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o Example: (cont.)

o The threshold is %N n=—F , denoted by 7, divides the real line
Into two regions, say R, a d R,, where R, consists of the set of
points that are greater than r,and R, consists of the set of points
that are less than .

o If ry&, >1,, the decision is made that S, was transmitted.
o If Ty/&, <7,, the decision is made that S, was transmitted.

5=V 51=E,
® i Py

Region R, = ——————> Region it

i

46



®

The Optimum Detector é//“;—i; -

)}OICU"?WJunIc
Sz ABS

o Example: (cont.)
o The threshold 7, depends on Nyand p. If p=1/2, 7,=0.

o If p>1/2, the signal point s, is more probable and, hence, 7, <O0.
In this case, the region R, is larger than R, , so that s, Is more
likely to be selected than s,

o The average probability of error is minimized

o It 1S Interesting to note that in the case of unequal priori
probabilities, 1t is necessary to know not only the values of the
priori probabilities but also the value of the power spectral
density N,, or equivalently, the noise-to-signal ratio, in order to
compute the threshold.

o When p=1/2, the threshold is zero, and knowledge of N, is not required
by the detector. N
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criterion minimizes the probability of error when the M signals are
equally probable a priori”.

o Let us denote by R, the region in the N-dimensional space for
which we decide that signal s(t) was transmitted when the vector
r=[ryry---.. ry] Is received.

o The probablllty of a correct decision given that sm(t) was
transmittedits: . T

P(clsy): (Sm)=f (rls)\( )0'r .

o The average probablllty of a correct decision is: f—

M
P(c) = Z—P(c|s) Z jp<r|s )dr

o Note that P(c) |s maximized by selectlng the signal s, If p(r|s,,) Is
larger than p(r|s,) for all m#k. Q.E.D.
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o Similarly for the MAP criterion, when the M signals are not equally
probable, the average pht;lobability of a correct decision is

P(C):Zj P(s. |r)p(r)dr
m=1R_ \ same for all Siy-

o In order for P (c) to be as large as possible, the points that are to be
Included in each particular region R are those for which P(s.|r)
exceeds all the other posterior probabilities. Q.E.D.

o We conclude that MAP criterion maximize the probability of correct
detection.
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Performance of the Optimum Receiver for
Memoryless Modulation

Probability of Error for Binary Modulation
Probability of Error for M-ary Orthogonal Signals
Probability of Error for M-ary Biorthogonal Signals
Probability of Error for M-ary PAM

Probability of Error for M-ary PSK

Differential PSK (DPSK) and Its Performance
Probability of Error for QAM

Comparison of Digital Modulation Methods
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Let us consider binary PAM signals where the two signal waveforms
are s,(t)=g(t) and s,(t)= —g(t), and g(t) is an arbitrary pulse that is
nonzero in the interval 0<t <T, and zero elsewnhere.

Since s, (t)= —s,(t), these signals are said to be antipodal.
The energy in the pulse g(t) Is &,.

PAM signals are one-dimensional, and, their geometric
representation is simply the one-dimensional vector:

s, =+/& » S, =/

—_— f I_L-' 'i.lll?
— i -
5 L) 5
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o Let us assume that the two signals are equally likely and that signal
s,(t) was transmitted. Then, the received signal from the (matched

filter or correlation) demodulator is
r=s,+n=,/¢g +n

where n represents the additive Gfussian noise component, which
has zero mean and variance o’ == N,.

o In this case, the decision rule based on the correlation metric given
by C(r,s . )=2r-s_ —HsmH2 (Page 39) compares r with the threshold
zero. If r >0, the decision is made in favor of s,(t), and if r<0, the
decision is made that s,(t) was transmitted.
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o The two conditional PDFs of r are:

1 —(r—\/g)2 /' Ng

p(rlsl):
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o Given that s,(t) was transmitted, the probability of error is S|mply the

probability that r<0.

_[ exp| — dr

P(e|sl):jooop(r|sl)dr:\/7zT
28,0/N0 lezdx X:(r_\/g)

.
J_ N%
- ij e '2dx (x=-x)
J27 251N,

:Q[ ﬂj Q(t)zﬁfe‘xz’zdx t>0

N,
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o If we assume that s,(t) was transmitted, r =—/s, +n and the

probability that r>0 is also P(e|s,) = Q(y/2,/ N, ). Since the signal
s,(t) and s,(t) are equally likely to be transmitted, the average

probability of error is

1 1 2, -
PbZEP(e|31)+EP(e|52):Q( N_oj (A)

o Two Important characteristics of this performance measure:
o First, we note that the probability of error depends only on the
ratio &, /N,
o Secondly, we note that 2g /N, Is also the output SNR, from the
matched-filter (and correlation) demodulator.

o Theratio g, /N, is usually called the signal-to-noise ratio per bit.
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o We also observe that the probability of error may be expressed in

terms of the distance between that the two signals s;and s, .

o From Page 52, we observe that the two signals are separated by the
distance d,,=2./s,. By substituting &, :%dfz into Equation (A),we

obtain
d2
P — 12
i Q[ 2NO]

o This expression illustrates the dependence of the error probability on
the distance between the two signals points.
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o Error probability for binary orthogonal signals
o The signal vectors s,and s, are two-dimensional.

Sa Sl ¥ [\/g O]
i G ".,'IE E_:,III- SZ — [O \/g]

where g denote the energy for each of the waveforms. Note that the
distance between these signal points is d,, =+/2¢, .
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o Error probability for binary orthogonal signals

o To evaluate the probability of error, let us assume that s, was
transmitted. Then, the received vector at the output of the
demodulator is r =[,/g, +n, n,].

o We can now substitute for r into the correlation metrics given by
C(r,s,) =2r-s, —[s.| to obtain C(r, s,) and C(r, s,).
o The probability of error Is the probability that C(r, s,) > C(r, s,).

:>(2n2\/g—5b)>(25b+2n1 5b—gb) n2>n1+\/g
/

P(els,)=PIC(r,s,)>C(K,s,)]=PIn, —n, >/g,]
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o Error probability for binary orthogonal signals
o Since n; and n, are zero-mean statistically independent Gaussian
random variables each with variance % N,, the random variable
X=n, - n, IS zero-mean Gaussian with variance N,. Hence,

1 * —x%/2 &
- dx = b
\/EIJ%/Noe " Q[ Noj

o The same error probability is obtained when we assume that s, Is
transmitted:

P =Q[ %) =Q(\/Z) where 7, is the SNR per bit.
0

59



®

Probability of Error for Binary Modulation /7=~

% s
)}a, o A%

C°”?mun|ca'.\°“" CO —
Sz ABS

o |If we compare the probability of error for binary antipodal signals
with that for binary orthogonal signals, we find that orthogonal
signals required a factor of 2 increase in energy to achieve the same
error probability as antipodal signals.

o Since 10 log,,2=3 dB, we say that orthogonal signals are 3dB poorer
than antipodal signals. The difference of 3dB is simply due to the
distance between the two signal points, which is d?, = 2¢ for
orthogonal signals, whereas d/, = 4¢, for antipodal signals.

o The error probability versus 10 log,, & /N, for these two types of
signals Is shown in the following figure (B). As observed from this
figure, at any given error probability, the /N, required for
orthogonal signals is 3dB more than that for antipodal signals.
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o Probability of error for binary signals

Probability of error, £,

11

110

o Q
O IR T i (S

I

o
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o For equal-energy orthogonal signals, the optimum detector selects
the signal resulting in the largest cross correlation between the
received vector r and each of the M possible transmitted signals

vectors {s}, I.e.,

C(r,s, )=r-s, Zrk " m=12,...,M

o To evaluate the probability of error, let us suppose that the signal s,
Is transmitted. Then the received signal vector is

r:[«/gb +n, n, n3---nM]

where &, denotes the symbol energy and n,,n,,---,n,, are zero-mean,

mutually statistically independent Gaussian random variable with

equal variance o2 = % N, .

62
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o In this case, the outputs from the bank of M correlations are

C(r,s,)= \/g(\/ng nl)
C(.r’ 52): \/‘?snz

C(r’SM ):\/gnM

o Note that the scale factor g may be eliminated from the correlator
outputs dividing each output by /e, .

o With this normalization, the PDF of the first correlator output Is

P (Xl) =

1
7N,

exp

63
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o And the PDFs of the other M—1 correlator outputs are

1 e_X%/NO

p, (Xn)= T ,

o It 1s mathematically convenient to first derive the probability that the
detector makes a correct decision. This is the probability that r, is
larger than each of the other M—1 correlator outputs n,,ng,---, ny,.

This probability may be expressed as

m=23,....M

P = _“_O(;)P(n2 <r,n,<r,...n, <r|r)p(r)dr

whereP(n, <r,n, <r,...,n, <r,|r) denotes the joint probability
that n,,n,,---, ny, are all less than r,, conditioned on any given r.
Then this joint probability is averaged over all r,.
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o Since the {r.} are statistically independent, the joint probability
factors into a product of M—1 marginal probabilities of the form:

P(n_<r| j pr m=23,...,M --(B)

n 2/N0 x2/2
dx X =,/2/N,X,
r! v

o This probabilities are identical for m=2,3,---,M, and, the joint
probability under consideration is simply the result in Equation (B)

raised to the (M—1)th power. Thus, the probability of a correct
decision is

P =

M-1
il 2/ 0 _X2
] w(\/__[ A /dej p(r,)dr,
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o The probability of a (k-bit) symbol error is

p,=1-P

-

1 o 1 ¢y
il

C

M -1
¢/ 2dxj exp

Ty
1 NO

nicat®™

SLAp>

_i B 2¢, ’
2y N,

e

" H=
_% S;OJ
a’cﬂw"(&;

&

dy

o The same expression for the probability of error is obtained when
any one of the other M-1 signals is transmitted. Since all the M
signals are equally likely, the expression for P,, given above is the
average probability of a symbol error.

o This expression can be evaluated numerically.
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o In comparing the performance of various digital modulation methods
It Is desirable to have the probability of error expressed in terms of
the SNR per bit, ¢,/N,, instead of the SNR per symbol, /Nj.

o With M=2k each symbol conveys k bits of information, and hence
e~ K &, Thus, Equation (C) may be expressed in terms of g,/N, by
substituting for ..

o Itis also desirable to convert the probability of a symbol error into

an equivalent probability of a binary digit error. For equiprobable
orthogonal signals, all symbol errors are equiprobable and occur

with probability
PM _ I:)I\/I

M—-1 2-1
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o Furthermore, there are ( ] ways In which n bits out of k may be In
error. Hence, the averagé number of bit errors per k-bit symbol is

Zn( ] -1 22kk—11 i )

n=1

and the average bit error probability is just the result in Equation (D)
divided by k, the number of bits per symbol. Thus,

k-1
% P, Fu k >>1
2" -1 2

P =

U

o The graphs of the probability of a binary digit error as a function of
the SNR per bit, €,/N,, are shown in Figure (C) for M=2,4,8,16,32,
and 64. This figure illustrates that, by increasing the number M of
waveforms, one can reduce the SNR per bit required to achieve a
given probability of a bit error.
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o For example, to achieve a
P,=10 ">, the required SNR
per bit is a little more than
12dB for M=2, but if M Is
Increased to 64 signal
waveforms, the required SNR
per bit is approximately 6dB.
Thus, a savings of over 6dB
IS realized in transmitter
power required to achieve a
P,=10 "> by increasing M
from M=2 to M=64.
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o What is the minimum required &,/N, to achieve an arbitrarily small
probability of error as M—o0?

o A union bound on the probability of error.
o Let us investigate the effect of increasing M on the probability of
error for orthogonal signals.

o To simplify the mathematical development, we first derive an
upper bound on the probability of a symbol error that is much
simpler than the exact form given in the following equation:

_1 — (ﬁ _[_yooe

M -1
'/ dej

70
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o A union bound on the probability of error (cont.) .

o Recall that the probability of error for binary orthogonal signals

s given by: P, = Q(\/,Z:Z ) -k

o Now, If we view the detector for M orthogonal signals as one that
makes M —1 binary decisions between the correlator outputs
C(r,s,) that contains the signal and the other M—1 correlator
outputs C(r,s,,), m=2,3,---,M, the probability of error is upper-
bounded by union bound of the M —1 events. That is, if E;
represents the event that C(r,s;)> C(r,s,) for i1, then we

have p_ —p(U ) Zp ). Hence,

Py <(M-1)R, = (M -1)Q(\/fs /Ny ) < MQ(1/e5 /Ny )
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o A union bound on the probability of error(cont.)
o This bound can be simplified further by upper-bounding

Q(«/gs /' N, )
Qle/N, J<e= (B

PM < Me—SS/ZNO — 2k e—ké‘b/ZNO

k(&5 /Ng—2In2)/2

o We have

thus,

~(F)
P, <¢€

o AS k—oo or equivalently, as M—o, the probability of error

approaches zero exponentially, provided that &/N, Is greater than
2ln 2,

% 52In2=139  (1.42dB)

0
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o A union bound on the probability of error(cont.)

o The simple upper bound on the probability of error given by
Equation (F) implies that, as long as SNR>1.42 dB, we can
achieve an arbitrarily low P, .

o However, this union bound is not a very tight upper bound as a
sufficiently low SNR due to the fact that upper bound for the Q
function In Equation (E) is loose.

o In fact, by more elaborate bounding techniques, it can be shown
that the upper bound in Equation (F) is sufficiently tight for
&INy>4 In2.

o For /Ny,<4 In2, a tighter upper bound on P, is

P, < 2g e /No-inz]

73



Probability of Error for M-ary Orthogonal Signals //7*;

o A union bound on the probability of error(cont.)
o Consequently, P, ~>0 as k—oo, provided that

b 5 In2=0.693 (~1.6dB)
0

o Hence, —1.6 dB is the minimum required SNR per bit to achieve
an arbitrarily small probability of error in the limit as
k—o0(M—00). This minimum SNR per bit is called the Shannon
limit for an additive Gaussian noise channel.
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o As indicated in Chapter 3, a set of M=2k biorthogonal signals are
constructed from % M orthogonal signals by including the negatives
of the orthogonal signals. Thus, we achieve a reduction in the
complexity of the demodulator for the biorthogonal signals relative
to that for orthogonal signals, since the former is implemented with
/M cross correlation or matched filters, whereas the latter required
M matched filters or cross correlators.

o Let us assume that the signal s,(t) corresponding to the vector
s;=[\Js, 0 0---0] was transmitted. The received signal vector is

r:[\/g+n1 nz"'nlvl/z]

where the {n_} are zero-mean, mutually statistically independent
and identically1 distributed Gaussian random variables with
variance o? = > N, -
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o The optimum detector decides in favor of the signal corresponding

to the largest in magnitude of the cross correlators

M/2 1
C(rSy)=r-Sy=2 hSu, m:1,2,...,EM
k=1

while the sign of this largest term is used to decide whether s_(t) or
—s.(t) was transmitted.

o According to this decision rule, the probability of a correct decision
is equal to the probability that r, = /e, +n, >0 and r, exceeds |r|=[n,|
for m=2,3,--- 4 M. But

Pl <xln>0)= [ e e e
0
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o Then, the probability of a correct decision is

SN2 _X M/2-1
= e ] el

from which, upon substitution for p(r,), we obtain

M /2-1
v+ 28 /NO —X2/2 —V2/2 .
C / jm( / j V265 /Ny /N0 dxj © o (G)

S Y|
R v el BRGSO R

where we have used the PDF of r, given in Page 63.
o The probability of a symbol error P,,=1-P,
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o P, and Py, may be evaluated AR .
numerically for different values i \\\
of M. The graph shown in the 2ty
following figure (D) illustrates R
P, as a function of 5/N,, : e
where =K g, for M=2,4,8,16 s 1\
and 32. 7 e v r @i ]
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o In this case, the probability of error for M=4 is greater than that for
M=2. This Is due to the fact that we have plotted the symbol error

probability P,, in Figure(D).

o If we plotted the equivalent bit error probability, we should find that
the graphs for M=2 and M=4 coincide. (Why?)

o As In the case of orthogonal signals, as M—o (k—o0), the minimum
required &/N, to achieve an arbitrarily small probability of error is
—1.6 dB, the Shannon limit.
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o Recall that M-ary PAM signals are represent geometrically as M

one-dimensional signal points with value :

S :1/£8 A m=12,---,M
m 2 g m

where A =(2m-1-M )d, m=12,---,M
o The Euclidean distance between adjacent signal points is d/2& .
o Assuming equally probable signals, the average energy is :

3
Il

80



®

Probability of Error for M-ary PAM é/‘;—i—; -

/

o Equivalently, we may characterize these signals in terms of their

average power, where is : ,
d &,

Sa _L(\2_
I:)av: T _6(M2 1) T (*)

o The average probability of error for M-ary PAM

o The detector compares the demodulator output r with a set of M-1 thresholds,
which are placed at the midpoints of successive amplitude level and decision is
made in favor of the amplitude level that is close to r.

/1
2d Egg

-':-. o & | M i "_'- ."|'I: } _;I ."-|'l. 4 q
- : - : »— - - -

o We note that if the mth amplitude level is transmitted, the demodulator output
IS 1
r=s,+n= Eé‘gAn+n

: : : 1
where the noise variable n has zero-mean and variance o’ = > N,
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o Assuming all amplitude levels are equally likely a priori, the
average probability of a symbol error is the probability that the
noise variable n exceeds in magnitude one-half of the distance

between levels.

o However, when either one of the two outside levels +(M-1) is
transmitted, an error can occur in one dlrectlon only.

M — 1 1 M 1 ’) o0 :XZ / 0
P, =MP£I’—Sm>d Zggj_ Y \/ZENO/Z j‘d\/i No

M-1 2= 2 .
M Tos W il wherey =x/JNo/2

24y >0
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From (*) in page 81, we note that 6 S
<o ’ j
d gg N 2_1 I:)avT

o BY substituting ford 289, we obtain the average probability of a
symbol error for PAM In terms of the average power :

_2(M-1) 6P, T |_2(M-1) 6E.,
LY Q[\/(le)No] M Q[\/(le)NOJ

o It 1s customary for us to use the SNR per bit as the basic
parameter, and since T=kT, and k =log, M:

o 2(M —1)Q[\/(6Iog2 M )gbavj

M (M2 -1)N,
=P,T, isthe average bitenergy and &,,,/N, is the average SNR

where &,
per bit.
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to the error probability for
binary antipodal signals.

o The SNR per bit increase
by over 4 dB for every
factor-of-2 increase in M.

o For large M, the additional
SNR per bit required to
Increase M by a factor of 2
approaches 6 dB.
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o Recall from that digital phase-modulated signal waveforms may be
expressed as:

s, (t)= g(t)cos{Zm‘ct +|2V|—7z(m —1)} 1<m<M, O0<t<T
and have the vector representation: Energy in each W;a\//eform-

sm(t):{\/fscosiﬂ—ﬂ(m—l) \/?Ssinlzvl—ﬂ(m—l)} E. =%Eg

o Since the signal waveforms have equal energy, the optimum detector
for the AWGN channel computes the correlation metrics

C(r,s,)=r-s,, m=12--- M

m!
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In other word, the received signal vector r=[r, r,] is projected onto
each of the M possible signal vectors and a decision is made in favor
of the signal with the largest projection.

This correlation detector Is equivalent to a phase detector that
computes the phase of the received signal from r.

We selects the signal vector s whose phase is closer to r.
The phase of r is

or
®, =tan"'-2
r-l

We will determine the PDF of ©, , and compute the probability of
error from it.

Consider the case in which the transmitted signal phase is

®, =0, corresponding to the signal s, (t).
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o The transmitted signal vector iss, =| /€, 0], and the received signal
vector has components:

rlz./f,'S + N, r,=n,

o Because n, and n, are jointly Gaussian random variable, it follow
that r; and r, are jointly Gaussian random variable variables with

E(r) =&, E(r,)=0, and (7: :032 :%NO =o'

2 2
P, (1,1,)= 5 exp iy )

2
270, 20,

o The PDF of the phase ©, is obtained by a change in variables from

(ry,r,) to: r
V =7 +r; ® =tan"-%
I
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I Th t PDF of Vand @, : LAB&?
e join 0] an
’ J ........................................................... drler :VdVd@
V4 ............ VE4g —2JEN o056,
pv’®r(v’®r): ................... : 2exp — \/j
270, 20,

o Integration of p, o (V,®, Jover the range of V yields Pe, (©,)
p® J‘ pVG) V ,© )dV
V 2 ,
Le_gs/Nosirﬁ@rJ‘w \% e_(No/Z_mCOS(@rJ /20r dV
° N0/2

210"
1 g 7ssin 2@, J‘ V, 2yscos®r) IZJEdV, N V
27[(7 N, /2
where we define the symbol SNR as 7, = &,/N,.
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1.61
1.43 .= 10
.25 f@r (®r) beCOmeS

4. —a | NArrower and more

Lo7| ' peaked about ®, =0 as
< the SNR 7, increases.

.71

0.54 -

0.36

LURN I o

1 L — |
—3. 14 —-2.51 —1.88% .26 — 0.3 0L OGS 1.2 1.8 251 3.1«

Probability density function pir‘"(@)r) for y, =1,2,4, and 10.
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o When s,(t) Is transmitted, a decision error is made if the noise causes

the phase to fall outside the range —z/M <®, <7z/M . Hence, the
probability of a symbol error is

P —1- j”/M

/M r

o In general, the integral of Pe, (@)r) doesn’t reduced to a simple form
and must be evaluated numerically, except for M =2 and M =4.

o For binary phase modulation, the two signals s,(t) and s,(t) are
antipodal. Hence, the error probability is

o
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When M = 4, we have In effect two binary phase-modulation signals
In phase quadrature.

Since there is no crosstalk or interference between the signals on the
two quadrature carriers, the bit error probability is identical to that of
M= 2.

Then the symbol error probability for M=4 is determined by noting
that , ) 2 17
Pc:(l_PZ) = 1_Q :
I\IO

where P, is the probability of a correct decision for the 2-bit symbol.
There, the symbol error probability for M =4 is

vl (]
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o For M > 4, the symbol error probability P,, is obtained by
numerically integrating Equation P, =1- J' ”//MM Po. (@r)d(@r

= W W =

10 =

T

Probability of a symbal error, P,

L

SMNERE per bar, s (dB)
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o An approximation to the error probability for large M and for large
SNR may be obtained by first approximating p_ (®)-

o For & /Ny,>>1 and |®,/<0.57 p, (©) is well approximated

r

as : 2
P, (©,)~ \/Zcos@) g 7SI Or
7T

o Performing the change in variable from @, to u=,/v, sin®,

P, zl—jﬂ/M s cos@®,e7 "0 4@,
M 7 k =log, M
2 = - v, =kv
~—/72.j 27 sin(7z/M)e du .

—ZQ( 2 sinij—zQ( 2k sié
_ 7/3 M _ 7/b M
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When a Gray Code Is used in the mapping of k-bits symbols into the
corresponding signal phases, two k-bit symbols corresponding to
adjacent signal phases differ in only a signal bit.

The most probable error result in the erroneous selection of an
adjacent phase to the true one.

Most k-bit symbol error contain only a single-bit error. The
equivalent bit error probability for M-ary PSK is well approximated
as :

1
P.~—P
b k M
In practice, the carrier phase Is extracted from the received signal by
performing some nonlinear operation that introduces a phase

ambiguity.
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o For binary PSK, the signal is often squared in order to remove the
modulation, and the double-frequency component that is generated is
filtered and divided by 2 in frequency in order to extract an estimate
of the carrier frequency and phase .

o This operation result in a phase ambiguity of 180" in the carrier phase.

o For four-phase PSK, the received signal is raised to the fourth power
to remove the digital modulation, and the resulting fourth harmonic
of the carrier frequency is filtered and divided by 4 in order to
extract the carrier component.

o These operations yield a carrier frequency component containing ¢, but there
are phase ambiguities of +90° and 180" in the phase estimate.

o Consequently, we do not have an absolute estimate of the carrier
phase for demodulation.
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o The phase ambiguity problem can be overcome by encoding the

Information in phase differences between successive signal
transmissions as opposed to absolute phase encoding.
o For example, in binary PSK, the information bit 1 may be transmitted
by shifting the phase of carrier by 180" relative to the previous carrier

phase. Bit 0 Is transmitted by a zero phase shift relative to the phase In
the previous signaling interval.

o In four-phase PSK, the relative phase shifts between successive
Intervals are 0, 90", 180", and -90 " ,corresponding to the information
bits 00, 01, 11, and 10, respectively.

o The PSK signals resulting from the encoding process are said to be
differentially encoded.
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A
The detector Is a relatively simple phase comparator that compares

the phase of the demodulated signal over two consecutive interval to
extract the information.

Coherent demodulation of differentially encoded PSK results in a
higher probability of error than that derived for absolute phase
encoding.

With differentially encoded PSK, an error in the demodulated phase
of the signal in any given interval will usually result in decoding
errors over two consecutive signaling intervals.

The probability of error in differentially encoded M-ary PSK is
approximately twice the probability of error for M-ary PSK with
absolute phase encoding.
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o The received signal of a differentially encoded phase-modulaféa

signal in any given signaling interval is compared to the phase of the
received signal from the preceding signaling interval.

o We demodulate the differentially encoded signal by multiplying r(t)
by cos2xnft and sin2xf.t integrating the two products over the
Interval T.

o At the kth signaling interval, the demodulator output :

r, :[\/?Scos(ek —g)+n, /&, sin(6, —¢)+nk2}

or equivalently, |

where 0, Is the phase angle of the transmitted signal at the kth
signaling interval, ¢ Is the carrier phase, and n,=n,,+jn,, IS the noise
vector.
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o Similarly, the received signal vector at the output of the demoduiator
In the preceding signaling interval Is :

rk_l — /gs e j(gk—1_¢) _|_ nk_]_

o The decision variable for the phase detector is the phase difference
between these two complex numbers. Equivalently, we can project
r, onto r,_, and use the phase of the resulting complex number :

rkrk*_l :gsej(ek_ek—1)+ /gsej(ek_¢)n:_l+ gse_j(ek—l_¢)nk +nkn:_1

which, in the absence of noise, yields the phase difference6,-6, ;.

o Differentially encoded PSK signaling that is demodulated and
detected as described above is called differential PSK (DPSK).
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If the pulse g(t) is rectangular, the matched filter
may be replaced by integrate-and-dump filter

Matche
——l'"@—b I EthLd —  Sampler
filter }
s Vg
Recelved Tcm 27t l
s1emal : Delay ™™ Phase Output
Oscillator o U F
by T || comparato decision
lsin 2nf.t T
Matched .
—F®—> : —=  Sampler
filler

Block diagram of DPSK demodulator
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o The error probability performance of a DPSK demodulator an
detector

o The derivation of the exact value of the probability of error for
M-ary DPSK is extremely difficult, except for M = 2.

o Without loss of generality, suppose the phase difference
0,-0, ,=0. Furthermore, the exponential factor e(%-1)

and ei®) can be absorbed into Gaussian noise components n, ,
and n,, without changing their statistical properties.

o =&, +4/E, (ﬂk + nk_1)+ n.n, ,

o The complication in determining the PDF of the phase Is the term
nn=, ;.
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relative to the dominant noise term /g (n,+n*, ;).

o We neglect the term n.n*,_; and normalize r,r*, ; by dividing
through by /&, , the new set of decision metrics becomes :

x = /& +Re(n, +n;_,)

y = Im(nk +n,_,
o The variables x and y are uncorrelated Gaussian random variable

with identical variances 6,°=N,. The phase is

O, = tantY
X
o The noise variance Is now twice as large as in the case of PSK.

Thus we can conclude that the performance of DPSK is 3 dB
poorer than that for PSK.
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o This result is relatively good for M >4 , but it Is pessimistic forAR/I =

2 that the loss In binary DPSK relative to binary PSK is less than 3
dB at large SNR.

o In binary DPSK, the two possible transmitted phase differences
are 0 and = rad. Consequently, only the real part of r,r*, , Is need
for recovering the information.

Re(rkrk 1) ;(rkrk 1+rk I 1)

o Because the phase difference the two successive signaling
Intervals is zero, an error is made If Re(r,r*, ,)<0.

o The probability that r r*, _,+r*r, ,<0 is a special case of a
derivation, given in Appendix B (Proakis 4" Edition).
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o Appendix B concerned with the probability that a general e
quadratic form in complex-valued Gaussian random Variable is
less than zero. According to Equation B-21, we find it depend
entirely on the first and second moments of the complex-valued
Gaussian random variables r, and r, ;.

o We obtain the probability of error for binary DPSK in the form

Pb — le_gb/NO
2

where g,/N, Is the SNR per bit.
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o The probability of a binary digit error for four-phase DPSK with
Gray coding can be express in terms of well-known functions, but

It’s derivation is quite involved.
o According to Appendix C, it is expressed in the form :

P, =Q,(a, b)—% Io(ab)exp[—%(a2 + bz)}
where Q,(a,b) is the Marcum Q function, 1,(x) is the modified

Bessel function of order zero, and the parameters a and b are
defined as

a—Jzy{l—\@’”d szy "[“\/9
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16" | o Because binary DPSK is only

' o ‘ slightly inferior to binary PSK
at large SNR, and DPSK does
not require an elaborate
method for estimate the carrier
phase, it is often used in digital
communication system.

Twwo- and four-
phise PSK

2 i Two-phase —
DPSEK

1072 —

[T
—
o

Probability of a bit emrorn. P,

o) [ I

10-F |— DISE

5

ozt 1 —

3

i) 2 4 v 8 10 12 14
SMNRE per bit, yp, (A )

lo-"

Probability of bit error for binary and four-phase
PSK and DPSK
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o Recall that QAM signal waveforms may be expressed as

s, (t)=A..g(t)cos2af t— A . (t)sIn2xf_t

where A.. and A are the information-bearing signal amplitudes of
the quadrature carriers and g(t) is the signal pulse.

o The vector representation of these waveform is

o To determine the probability of error for QAM, we must specify the
signal point constellation.
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o QAM signal sets that have M = 4 points.

, d=24

{2} (h)

o Figure (a) Is a four-phase modulated signal and Figure (b) is with
two amplitude levels, labeled A, and A,, and four phases.

o Because the probability of error is dominated by the minimum distance
between pairs of signal points, let us impose the condition that d{®) =2A
and we evaluate the average transmitter power, based on the premise
that all signal points are equally probable.
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o For the four-phase signal, we have

P, = %(4)2A2 = 2A’

o For the two-amplitude, four-phase QAM, we place the points on
circles of radii A and+/3A. Thus,d® =2A, and

P, = %[2(3A2)+ 2A?|=2A°
which iIs the same average power as the M = 4-phase signal
constellation.

o Hence, for all practical purposes, the error rate performance of
the two signal sets Is the same.

o There iIs no advantage of the two-amplitude QAM signal set over
M = 4-phase modulation.
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o QAM signal sets that have M = 8 points.

o We consider the four signal constellations : Assuming that the

_ wCO signal points are
“3.1) "}mu.u X TR equally probable, the

(_3,_3}& yu.--n A average transmitted
=1, (1,-1) P . .
signal power is :

P = 2+ L)

(1+33,0)

2 M

2 2
— oA (amc + ams )
M m=1

(d)

~ The coordinates (A,,.,A,..) for each
signal point are normalized by A
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o The two sets (a) and (c) contain signal points that fall on a *

rectangular grid and have P_, = 6A.
o The signal set (b) requires an average transmitted power P, =
6.83A2, and (d) requires P, = 4.73A2.

o The fourth signal set (d) requires approximately 1 dB less power
than the first two and 1.6 dB less power than the third to achieve
the same probability of error.

o The fourth signal constellation is known to be the best eight-point
QAM constellation because it requires the least power for a given
minimum distance between signal points.
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o QAM signal sets for M > 16
o For 16-QAM, the signal points at a given
amplitude level are phase-rotated by relative

to the signal points at adjacent amplitude
levels. \ij

o However, the circular 16-QAM constellation
IS not the best 16-point QAM signal constellation
for the AWGN channel.

o Rectangular M-ary QAM signal are most frequently used in practice.
The reasons are :

o Rectangular QAM signal constellations have the distinct
advantage of being easily generated as two PAM signals
Impressed on phase-quadrature carriers.
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o The average transmitted power required to achieve a given

minimum distance is only slightly greater than that of the best
M-ary QAM signal constellation.

o For rectangular signal constellations in which M = 2%, where K is
even, the QAM signal constellation is equivalent to two PAM signals
on quadrature carriers, each having /M = 2%/2 signal points.

o The probability of error for QAM is easily determined from the
probability of error for PAM.

o Specifically, the probability of a correct decision for the M-ary
QAM system is

P =(-P, f
where p . Is the probability of error of an N—ary PAM.
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o By appropriately modifying the probability of error for M-ary PAM,

we obtain . 3
E
P =2/1-—— av
M ( JM jQ[\/M—l NO]

where ¢, /N, Is the average SNR per symbol.
o Therefore, the probability of a symbol error for M-ary QAM is

P, =1-(1-P,_F
o Note that this result is exact for M = 2k when k is even.

o When Kk Is odd, there is no equivalent ,/\ -ary PAM system. This is
no problem, because it is rather easy to determine the error rate for a
rectangular signal set.
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o We employ the optimum detector

that bases its decisions on the
optimum distance metrics, It Is
relatively straightforward to show
that the symbol error probability is
tightly upper-bounded as

P Sl{ZQ(\/(MBiV)NO Hz

S“QU <n§k—gf§VNoJ

| for any k > 1, whereg,, /N, IS the
6420 2 4 6 & 101214161820 average SNR per bit.

SMR per bir, v, (dB)

1o
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o For nonrectangular QAM signal constellation, we may upper-bound
the error probability by use of a union bound :

<M -1)( [ F /2N, |

where d® is the minimum Euclidean distance between signal points.

mln

o This bound may be loose when M is large.

o We approximate P,, by replacing M-1 by M., where M, Is the
largest number of nelghborlng points that are at dlstance dmln
from any constellation point.
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o One can compare the digital modulation methods on the basis of the
SNR required to achieve a specified probability of error.

o However, such a comparison would not be very meaningful, unless
It were made on the basis of some constraint, such as a fixed data
rate of transmission or, on the basis of a fixed bandwidth.

o For multiphase signals, the channel bandwidth required is simply the
bandwidth of the equivalent low-pass signal pulse g(t) with duration
T and bandwidth W, which is approximately equal to the reciprocal
of T.

o Since T=k/R=(log,M)/R, it follows that W =

R
log, M
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o As M Is increased, the channel bandwidth required, when the bit rate
R is fixed, decreases. The bandwidth efficiency is measured by the
bit rate to bandwidth ratio, which is

R
W:IogzM

o The bandwidth-efficient method for transmitting PAM is single-
sideband. The channel bandwidth required to transmit the signal is
approximately equal to 1/2T and,

R
W:ZIogzM

this Is a factor of 2 better than PSK.

o For QAM, we have two orthogonal carriers, with each carrier having
a PAM signal.
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o Thus, we double the rate relative to PAM. However, the QAM signal
must be transmitted via double-sideband. Consequently, QAM and
PAM have the same bandwidth efficiency when the bandwidth is
referenced to the band-pass signal.

o As for orthogonal signals, if the M = 2k orthogonal signals are
constructed by means of orthogonal carriers with minimum
frequency separation of 1/2T, the bandwidth required for
transmission of k = log,M information bits is

M M M
— p— — R
2T  2(k/R) 2log, M
In the case, the bandwidth increases as M Increases.

o In the case of biorthogonal signals, the required bandwidth is one-
half of that for orthogonal signals.
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o A compact and meaningful
comparison of modulation .
methods Is one based on the Fl—— —

M =4 PAM M= 8 PAM (SSB)

(S5B)

normalized data rate R/W (bits per
second per hertz of bandwidth)

versus the SNR per bit (¢,/N,)

required to achieve a given error

probability.
o Inthe case of PAM, QAM, and " [|

PSK, increasing M results in a |
higher bit-to-bandwidth ratio R/W.

l‘Jr_ ek

P5K
M=16
DPSK

R (bits/s)/Hz

M= 4 PSK
M =2 PAM
[SSB)

Bandwidth-limited
JUTH TR & |
R

M=2 M=

20
SNR per bit, y,, = £,/N, (dB)

M=16 Power-limited J
region: £ < |
B = I

Orthogonal signals

Coherent detection

- 0]
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o However, the cost of achieving the higher data rate is an increase in
the SNR per bit.

o Consequently, these modulation methods are appropriate for
communication channels that are bandwidth limited, where we
desire a R/W >1 and where there iIs sufficiently high SNR to support
Increases in M.

o Telephone channels and digital microwave ratio channels are examples
of such band-limited channels.

o In contrast, M-ary orthogonal signalsyieldaRIW <1. As M
Increases, R/W decreases due to an increase in the required channel
bandwidth.

o The SNR per bit required to achieve a given error probability
decreases as M increases.
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Consequently, M-ary orthogonal signals are appropriate for oW

limited channels that have sufficiently large bandwidth to
accommodate a large number of signals.

As M—x, the error probability can be made as small as desired,
provided that SNR>0.693 (-1.6dB). This Is the minimum SNR per
bit required to achieve reliable transmission in the limit as the
channel bandwidth W—oo and the corresponding R/AW—0.

The figure above also shown the normalized capacity of the band-
limited AWGN channel, which is due to Shannon (1948).

The ratio C/W, where C (=R) is the capacity in bits/s, represents the
highest achievable bit rate-to-bandwidth ratio on this channel.

Hence, It serves the upper bound on the bandwidth efficiency of any
type of modulation.

=
@7,
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o In this section, we consider the design of the optimum receiver for

carrier modulated signals when the carrier phase is unknown and no
attempt is made to estimate its value.

o Uncertainty in the carrier phase of the receiver signal may be due to

one or more of the following reasons:

o The oscillators that are used at the transmitter and the receiver to generate the
carrier signals are generally not phase synchronous.

o The time delay in the propagation of the signal from the transmitter to the
receiver is not generally known precisely.

o Assuming a transmitted signal of the form
= Reg(t)e 2|
that propagates through a channel with delay t, will be received as:

S(t —to) = Re[g (t _to)ejznfc(tto)} _ Re[g (t _to)e—jzsztOejznfC]
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The carrier phase shift due to the propagation delay t, Is can
¢ =2 1,

Note that large changes in the carrier phase can occur due to
relatively small changes in the propagation delay.

For example, if the carrier frequency f,.=1 MHz, an uncertainty or a
change in the propagation delay of 0.5us will cause a phase
uncertainty of « rad.

In some channels the time delay in the propagation of the signal
from the transmitter to the receiver may change rapidly and in an
apparently random fashion.

In the absence of the knowledge of the carrier phase, we may treat

this signal parameter as a random variable and determine the form of

the optimum receiver for recovering the transmitted information
from the received signal.
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o We consider a binary communication system that uses the two

carrier modulated signal s,(t) and s,(t) to transmit the information,
where:

sm(t):Re[slm(t)ejz”fct], m=12 0<t<T

and s,,(t), m=1,2 are the equivalent low-pass signals.
o The two signals are assumed to have equal energy

e=] s2(t)dt= %LT s, (1)

o The two signals are characterized by the complex-valued correlation
coefficient

1 7 -
Pr=pP= Z_EIO Sll(t)slz(t)dt
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o The received signal is assumed to be a phase-shifted version of the
transmitted signal and corrupted by the additive noise

n(t)= Re{[”c (t)+ in (t)]-ejz”fct} = Re[z(t)-ejz”fct]
o The received signal may be expressed as
r(t)=Re{[ s, (t)e" +2(t)]-e"*"

where 1, (t)=s,, (t)e’ +z(t), 0<t<T
r,(t) is the equivalent low-pass received signal.

o This received signal is now passed through a demodulator whose
sampled output at t =T Is passed to the detector.
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o The optimum demodulator

o We have demonstrated that if the received signals was correlated
with a set of orthogonal functions {f.(t)} that spanned the signal
space, the outputs from the bank of correlators provide a set of
sufficient statistics for the detector to make a decision that
minimizes the probability error.

o We also demonstrated that a bank of matched filters could be
substituted for the bank of correlations.

o A similar orthogonal decomposition can be employed for a
received signal with an unknown carrier phase.

o It 1s mathematically convenient to deal with the equivalent low-

pass signal and to specify the signal correlators or matched filters
In terms of the equivalent low-pass signal waveforms.
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o The optimum demodulator
o The impulse response h,(t) of a filter that is matched to the
complex-valued equivalent low-pass signal s(t), O<t<T is given
as h,(t)=s,"(T-t) and the output of such filter at t=T is simply
2

IOT 5,(t) dt=2¢ where g is the signal energy.

o A similar result is obtained if the signal s,(t) iIs correlated with
s, (t) and the correlator is sampled signal s(t) at t=T.

o The optimum demodulator for the equivalent low-pass received
signal s,(t) may be realized by two matcher filters in parallel, one
matched to s;,(t) and the other to s,(t).
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o The optimum demodulator
o Optimum receiver for binary signals

Filter
—m=| matched to
F1 ( 'r:l

LNl S |

.I"|||:_I!I]'

IFilter
— - matched 1o

G

[Jetector

Chutput

decision
— e

o The output of the matched filters or correlators at the sampling
Instant are the two complex numbers

r.=r. +Jr.

S’
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o The optimum demodulator
o Suppose that the transmitted signal is s,(t). It can be shown that

r,=2sc0sg+n,_+ j(2esing+n,, )
r, = 25‘,0‘ COS(¢—aO)+ n,. + j[25‘p‘sin(¢—ao)+ n,,

where p iIs the complex-valued correlation coefficient of two
signals s;,(t) and s;,(t), which may be expressed as

p=|plexp(j « ().

o The random noise variables n,, n;,, N,., and n,, are jointly
Gaussian, with zero-mean and equal variance.
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o The optimum detector

o The optimum detector observes the random variables [ry, ry Iy
r,.J=r, where r,=r,+jr,., and r,=r, +jr,,, and bases its decision
on the posterior probabilities P(s,|r), m=1,2.

o These probabilities may be expressed as

P(Sm | r): p(r |Sm )P(Sm)’ m = 1’2
p(r) v Likelihood ratio.

o The optimum decision rule may be expres/s/ed’é[s

S1 S
(s, 1) 2P(s,|r) or PUIS)>P(S:)

| <
32 (rls) TP
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o The optimum detector

o The ratio of PDFs on the left-hand side is the likelihood ratio,
which we denote as

A(r) — p(r | Sl)
p(r|s,)
o The right-hand side is the ratio of the two prior probabilities,

which takes the value of unity when the two signals are equally
probable.

o The probability density functions p(r|s,) and p(r|s,) can be
obtained by averaging the PDFs p(r|s,,,¢) over the PDF of the
random carrier phase, I.e.,

p(ris,) =] p(rls,.4)p(g)dg

132



®

oy

Optimum Receiver for Binary Signals ez

2
}:9 £y

SU

aps

o The optimum detector

o For the special case in which the two signals are orthogonal, i.e.,
p=0, the outputs of the demodulator are:

="+ )i

=2&£C0S¢p+n,. + J(2esing+n,,)
I, =1 + )l

— r]2c + JnZS

where (n,., Ny, Ny, N,) are mutually uncorrelated and,
statistically independent, zero-mean Gaussian random variable.
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o The optimum detector

o The joint PDF of r=[r,. r, I, I',;] may be expressed as a product
of the marginal PDFs.

o Consequently

P(re. 1s 181, 4) =

1 exp{— (.. —2£¢0s @) + (I, — 2£5in ¢)2}

2ro* 20+

1 .+,
R =

O O

where c°=2¢N,,.

o The uniform PDF for the carrier phase ¢ (p(¢)=1/2w) represents
the most ignorance that can be exhibited by the detector.

o This Is called the least favorable PDF for ¢.
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o The optimum detector
o With p(9)=1/2n, 0<¢<2m, substituted into the integral in p(r|s,),

we obtain:
— j G |5, 4)dg
1 24+ri+4e?) 1 (on 2¢ (1, COSg+1, Sing)
= exp| ——=———= ex d
2 710°° p( 207 j27z 0 p{ o’ 4

2
27 ¥0 o

1 zﬂexp{zfe(rlc COS ¢+ I, Sin ¢)}d¢ _ IO[Z&/rﬁ +r }

where 1,(x) Is the modified Bessel function of zeroth order.
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o The optimum detector

o By performing a similar integration under the assumption that the
signal s,(t) was transmitted, we obtain the result

1 2 +r2 +4¢° 26|15 + 17
eXp A 25 IO 2C 2S

p(rZC’rZS |Sz):

o When we substitute these results into the likelihood ratio given
by equation A(r), we obtain the result (see P.134)

2 2
270 20 o

A(r) p(rlsl) P(rlcrls |Sl) (r2cr25 |S ) (28 “ rlc +rls /O- ) ; P
p(r|82) P(rlcrls |SZ) (rZCrZS |S (26\“'2(,’ + rZS /G ) 1

o The optimum detector computes the two envelopesy i; + Fe and./f; + I,
and the corresponding values of the Bessel function |0(2g 2 +r2/ sz
and |0(23 .+, /023 to form the likelihood ratio.
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o The optimum detector

o We observe that this computation requires knowledge of the
noise variance c>2.

o The likelihood ratio is then compared with the threshold
P(s,)/P(s,) to determine which signal was transmitted.

o A significant simplification in the
Implementation of the optimum detector
occurs when the two signals are equally
probable. In such a case the threshold
becomes unity, and, due to the
monotonicity of Bessel function shown
In figure, the optlmum detection rule

simplifies to /rlcﬂli < (2 +12
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o The optimum detector
o The optimum detector bases its decision on the two envelopes
and +/r2 +r?, and /I,. + 15, itis called an envelope detector.

o We observe that the computation of the envelopes of the received
signal samples at the output of the demodulator renders the
carrier phase irrelevant in the decision as to which signal was
transmitted.

o Equivalently, the decision may be based on the computation of
the squared envelope r, 2+r, 2 and r,.2+r,2, in which case the
detector is call a square-law detector.
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o Detection of binary FSK signal

o Recall that in binary FSK we employ two different frequencies,
say f, and f,=f,+Af, to transmit a binary information sequence.

o The chose of minimum frequency separation Af =f, - f; IS
considered below:

s, (t) =+/2¢, /T, cos2z fit, s,(t)=4/2¢,/T, cos2zf,t, 0<t<T,

o The equivalent low-pass counterparts are:

Su(t)=+/26,/T,, S, (t)=+/2¢,/T,™", 0<t<T,

o The received signal may be expressed as:

r(t):\/ZT—Tbcos(Zyzfmt+¢m)+n(t), m=0,1
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o Detection of binary FSK signal
» Demodulation and square-law detection:

cos 27f |t

+ F Fle 2
——»@—» Io()df ——.’:' o ( )
i

sin 27tf 1

+ r : Fis 2 *
O Y2 [y o=y oo )

+
Received Output

_signal cos 27t (f; + Af)t

4 :
r ﬂ(,' 2
_-®—> Ig()dl‘ -—.’: o j!2( );
i

sin 27 (f; + A

:
I's J 5 2
fiar ——et o2 i

Sample
t=1T

fkc(t)Z\/%COS[(Zﬂ'fl+27Z'kAf)t:|, k=0,1
fks(t):\/%sin[(Z;rfﬁZﬂkAf)t], k=0,1
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o Detection of binary FSK signal

o If the mth signal is transmitted, the four samples at the detector may be
expressed as:

e = [ r(t0fie (Dt = {\/Tcos[Zyz f,+mAf )t+4, ]+n(t }{\/%COS[(Zﬂf1+27zkAf)t]}dt

2

= j;b{COS[Zﬂ(fl+mAf)t:|COS¢m—Sinl:27l'(f1+mAf)t:ISin¢m}°{COS|:27Z'(fl+kAf)t:|}dt+nkc

&

= J'OTb {COS[Zﬂ'(m—k)Aft]+COS[27Z'(2 f,+(m+k)Af )t]}cos¢m -

o

{sin[Zﬂ(m—k)Aft]—sin[Zyr(Zf +(m+k)Af )t}}sin ¢ dt+n,

:\/g sin[Zn(m—k)Aft]COS¢ +cos[27r (m-k) Aft]smqﬁ b+nkc
T, 27 (m—k)Af 27 (m—k)Af ;

in| 2 — k) AT 2 —k)AFT, |-1
; sin| 2z (m—k) b]cos¢m+cos[ 7 (M—k)AfT, |
27 (m—k)AfT, 27 (m—K)AfT,

%

sin¢m}+nkc k,m=0,1
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o Detection of binary FSK signal

o If the mth signal is transmitted, the four samples at the detector may be
expressed as (cont.):

e = [ ()0 f (D= {\/:bcos[Zn f+mAf )t+¢, ]+n(t }{\/%sin[(anlJrZﬂkAf)t]}dt

= %ﬂb {cos| 27 ( f, +mAf )t |cosg, —sin[ 2 ( f,+mAf )t]sing, je{sin[ 27 (f,+kAf)t ]l dt+n,

= TE:-[OR {—sin :Zn(m—k)Aft]+sin[27z(2 f, +(m+Kk)Af )t}}cos¢m -
{cos[Zn(m—k)Aft]—cos[Zyz(Zf +(m+k)Af )t]}sin¢ dt+n,

:\/g cos[27z(m—k)Aft]COS¢jm S|n[27z m—k) Aﬂ]smgﬁ .
T, Zﬂ(m—k)Af 27z(m k)Af ;

s cos| 2z (m—k)AfT, |-1 . sin| 277 (m—k)AfT, |
_ cos
)T 2z (m-k)ATT, I (m—K) AT,

sing, }-Fnks k,m=0,1
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o Detection of binary FSK signal
o We observe that when k=m, the sampled values to the detector

are
r.= «/Eb cos¢g. +n

: kK=m
r.= —«/8,0 sing_ +n_

o We observe that when k#£m, the signal components in the samples

r. and r,. will vanish, independently of the values of the phase

shifts ¢,, provided that the frequency separation between
successive frequency is Af = 1/T.

o Insuch case, the other two correlator outputs consist of noise
only, I.e.,

rkc:nkm rks:nks1 k7£m'
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o If the equal energy and equally probable signal waveforms are
represented as

Sy (t) = Re[s,m (t)ejz’”ct] m=12,...,M, 0<t<T

where s, (t) are the equivalent low-pass signals.

o The optimum correlation-type or matched-filter-type demodulator
produces the M complex-valued random variables

r=r_+jr. =IT L (t)h, (T —t)dt

0

T * T *
= [, 1 ()5 (T=(T=1))dt =] 1 (t)sp, (t)dt, m=12,...M
where r,(t) is the equivalent low-pass signals.

o The optimum detector, based on a random, uniformly distributed
carrier phase, computes the M envelopes

r|=.r2+r2, m=12,.. M
|m| mc ms

or, the squared envelopes |r,.|?, and selects the signal with the largest
envelope.
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Demodulation of M-ary signals for

noncoherent detection
145
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M-ary orthogonal FSK e B
Slgnalsl G iﬂfc’ Sample at t =T
o There are 2M e e 101 —-/Splo—;
correlators: two for T )
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o We assume that the M signals are equally probable a priori and %hat

the signal s,(t) is transmitted in the signal interval 0=t=T.
o The M decision metrics at the detector are the M envelopes

|r|_\/r +r2 m=12..M

where r_=./g, coSg +n,,

— \/gSin¢1 + nls

and r'mc = nmc’ rms = nms’ m = 2’3""’ M

o The additive noise components {n..} and {n..} are mutually
statistically independent zero-mean Gaussian variables with equal
variance o2=N,/2.

146



Probability of Error for Envelope Detection //-.(_;‘
of M-ary Orthogonal Signals 247

)?;:

&L $‘° —
o The PDFs of the random variables at the input to the detector aAr%

2412 +¢ /\/55(r1§+r1§)\
prl( " ): exp(_ 1c 1s2 S j IO

2
270

20 o
\ J
prm(rmc,rms)zzﬂazepr— 5 j m=2,3..M

o We define the normalized variables

\/I’ —I—I’

4T
@m:tanlﬂ
r

mc
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Clearly, r .=cRcos®, and r. =cR_sIn®. The Jacobian of this

transformation is

I =

Consequently,
R 1 E 2&
0,)=—texp| —=| R?+2= |1 S

P(R,,©;) 2ﬂexp{ 2[ L+ Nﬂ[ NORJ

p(Rm,®m):2R—;exp(—%Rrij, m=2.3,..,M

Finally, by averaging p(R,,,®,,) over @, the factor of 2 Is
eliminated.

Thus, we find that R, has a Rice probability distribution and R,
m=2,3,---,M, are each Rayleigh-distribued.

o Ccos® osin®
—oR_ SIN®,, oR, cosO,

_ 2
=0°R,
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o The probability of a correct decision is simply the probability that
R,>R,, and R;>R;,---,and R;>R.. Hence,

P.=P(R,<R,R,<R,....,R, <R)
= [ P(R, <RuR, <Ru...,Ry <RiIR = X)py, (X)X

o Because the random variables R, m=2,3,---,M, are statistically
Independent and identically distributed, the joint probability
conditioned on R, factors into a product of M-1 identical terms.

M

where P, = IOOO[P(RZ <R|R =X)] _1pRl (x)dx  (*¥)

P(R, <R R, =x)=] pg,(r,)dr,=1-e""
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o The (M-1)th power may be expressed as *

e = Eer (7, e

o Substitution of this result into Equation (*) in Page 150 and
Integration over x yield the probability of a correct decision as

=Y () (Mn_ljﬁexp{(nfii NJ

where /N, Is the SNR per symbol.
o The probability of a symbol error, which is P_=1-P_, becomes

~, i M-1) 1 nke
P =Y (-1)" ——_exp| — b
! le( ) [ n jn+1ex'{ (n+1)|\|0}

where g,/N, Is the SNR per bit.
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of M-ary Orthogonal Signals

o For binary orthogonal signals (M=2),
Equation reduces to the simple form

_ 1 4/2N
Pz—ie v

o For M>2, we may compute the

probability of a bit error by making
use of the relationship

2k—1
T o1

Probability of a bit error, P,

R Py

o Figure shows the bit-error probability
as a function of SNR per bit vy, for
M=2,4,8,16, and 32.
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Just as in the case of coherent detection of M-ary orthogonal signals,
we observe that for any given bit-error probability, the SNR per bit
decreases as M increase.

It can be shown that, in the limit as M— oo the probability of bit
error P, can be made arbitrarily small provided that the SNR per bit
IS greater than the Shannon limit of -1.6dB.

The cost for increasing M is the bandwidth required to transmit the
signals.

For M-ary FSK, the frequency separation between adjacent
frequencies is Af=1/T for signal orthogonality.

The bandwidth required for the M signals is W=M Af=M/T.
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o The bit rate is R=k/T, where k=log, M.
o Therefore, the bit rate-to-bandwidth ratio IS

R log,M
W M
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