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Optimum Receiver for Signals Corrupted by 
Additive White Gaussian Noise

◊ We assume that the transmitter sends digital information by use of 
M signals waveforms {sm(t)=1,2,…,M }.  Each waveform is 
transmitted within the symbol interval of duration T, i.e. 0≤t≤T.

◊ The channel is assumed to corrupt the signal by the addition of white 
Gaussian noise, as shown in the following figure:

where n(t) denotes a sample function of AWGN process with power 
spectral density Φnn( f )=½N0 W/Hz.
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◊ Our object is to design a receiver that is optimum in the sense that it 
minimizes the probability of making an error.

◊ It is convenient to subdivide the receiver into two parts—the signal 
demodulator and the detector.

◊ The function of the signal demodulator is to convert the received waveform r(t) 
into an N-dimensional vector r=[r1 r2 ..…rN ] where N is the dimension of the 
transmitted signal waveform.

◊ The function of the detector is to decide which of the M possible signal 
waveforms was transmitted based on the vector r.
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◊ Two realizations of the signal demodulator are described in the 
following section:
◊ One is based on the use of signal correlators.
◊ The second is based on the use of matched filters. 

◊ The optimum detector that follows the signal demodulator is 
designed to minimize the probability of error.
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Correlation Demodulator
◊ We describe a correlation demodulation that decomposes the 

receiver signal and the noise into N-dimensional vectors.

◊ In other words, the signal and the noise are expanded into a series of 
linearly weighted orthonormal basis functions {fn(t)}.

◊ It is assumed that the N basis function {f n(t)} span the signal space, 
so every one of the possible transmitted signals of the set 
{sm(t)=1≤m≤M } can be represented as a linear combination of        
{f n(t)}.

◊ In case of the noise, the function {f n(t)} do not span the noise space.  
However we show below that the noise terms that fall outside the 
signal space are irrelevant to the detection of the signal.
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◊ Suppose the receiver signal r(t) is passed through a parallel bank of
N basis functions {f n(t)}, as shown in the following figure:

◊ The signal is now represented by the vector sm with components smk, 
k=1,2,…N.  Their values depend on which of the M signals was 
transmitted.
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◊ In fact, we can express the receiver signal r(t) in the interval 0 ≤ t ≤ 
T as: 

◊ The term  n'(t),  defined as 

is a zero-mean Gaussian noise process that represents the difference 
between original noise process n(t) and the part corresponding to the 
projection of n(t) onto the basis functions {fk(t)}.
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◊ We shall show below that n'(t) is irrelevant to the decision as to 
which signal was transmitted.  Consequently, the decision may be 
based entirely on the correlator output signal and noise components 
rk=smk+nk, k=1,2,…,N.

◊ The noise components {nk} are Gaussian and mean values are:

and their covariances are:
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◊ From the above development, it follows that the correlator output {rk} 
conditioned on the mth signal being transmitted are Gaussian 
random variables with mean                                     

◊ Since the noise components {nk} are uncorrelated Gaussian random 
variables, they are also statistically independent.  As a consequence, 
the correlator outputs {rk} conditioned on the mth signal being 
transmitted are statistically independent Gaussian variables.
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◊ The conditional probability density functions of the random 
variables r=[r1 r2 … rN] are:

12

Mmsrpp
N

k
mkkm ,....,2,1)|()(

1

== ∏
=

         , s|r

Nk
N

sr
N

srp mkk
mkk ,.....,2,1         , )(exp1)|(

0

2

0

=






 −
−=

π

2

2
10 0

( )1( | ) exp  ,          1, 2,......,
( )

N
k mk

m N
k

r sp m M
N Nπ =

 −
= − = 

 
∑r s

----(A)

By substituting Equation (B) into Equation (A), we obtain the joint
conditional PDFs  

----(B)

Correlation Demodulator



◊ The correlator outputs (r1 r2 … rN) are sufficient statistics for
reaching a decision on which of the M signals was transmitted, i.e., 
no additional relevant information can be extracted from the 
remaining noise process n'(t).

◊ Indeed, n'(t) is uncorrelated with the N correlator outputs {rk}:
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◊ Since n' (t) and {rk} are Gaussian and uncorrelated, they are also 
statistically independent.

◊ Consequently, n'(t) does not contain any information that is relevant 
to the decision as to which signal waveform was transmitted.

◊ All the relevant information is contained in the correlator outputs {rk} 
and, hence, n'(t) can be ignored.
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◊ Example.
◊ Consider an M-ary baseband PAM signal set in which the basic 

pulse shape g(t) is rectangular as shown in following figure.
◊ The additive noise is a zero-mean white Gaussian noise process.
◊ Let us determine the basis function f(t) and the output of the 

correlation-type demodulator.
◊ The energy in the rectangular pulse is
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◊ Example.(cont.)
◊ Since the PAM signal set has dimension N=1, there is only one 

basis function f(t) given as:

◊ The output of the correlation-type demodulator is:

◊ The correlator becomes a simple integrator when f(t) is 
rectangular: if we substitute for r(t), we obtain:
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◊ Example.(cont.)
◊ The noise term E(n)=0 and:

◊ The probability density function for the sampled output is:
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◊ Instead of using a bank of N correlators to generate the variables 
{rk}, we may use a bank of N linear filters.  To be specific, let us 
suppose that the impulse responses of the N filters are:

where {fk(t)} are the N basis functions and hk(t)=0 outside of the 
interval  0 ≤ t ≤ T.

◊ The outputs of these filters are : 
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Matched-Filter Demodulator
◊ If we sample the outputs of the filters at t = T, we obtain

◊ A filter whose impulse response h(t) = s(T–t) , where s(t) is 
assumed to be confined to the time interval 0 ≤ t ≤ T, is called 
matched filter to the signal s(t).

◊ An example of a signal and its matched filter are shown in the 
following figure.
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Matched-Filter Demodulator
◊ The response of h(t) = s(T–t) to the signal s(t) is:

which is the time-autocorrelation function of the signal s(t).
◊ Note that the autocorrelation function y(t) is an even function of t , 

which attains a peak at t=T.
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Matched-Filter Demodulator
◊ Matched filter demodulator that generates the observed variables {rk}
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Matched-Filter Demodulator

◊ Properties of the matched filter.
◊ If a signal s(t) is corrupted by AWGN, the filter with an impulse 

response matched to s(t) maximizes the output signal-to-noise 
ratio (SNR).

◊ Proof:
◊ Let us assume the receiver signal r(t) consists of the signal s(t) 

and AWGN n(t) which has zero-mean and                      W/Hz.
◊ Suppose the signal r(t) is passed through a filter with impulse 

response h(t), 0≤t≤T, and its output is sampled at time t=T.  
The output signal of the filter is:

22

0

0 0

( ) ( ) ( ) ( ) ( )

       ( ) ( ) ( ) ( )

t

t t

y t s t h t r h t d

s h t d n h t d

τ τ τ

τ τ τ τ τ τ

= ∗ = −

= − + −

∫
∫ ∫

( ) 0
1
2nm f NΦ =



Matched-Filter Demodulator
◊ Proof: (cont.)

◊ At the sampling instant t=T:

◊ This problem is to select the filter  impulse response that 
maximizes the output SNR0 defined as:
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Matched-Filter Demodulator
◊ Proof: (cont.)

◊ By substituting for ys (T) and                     into SNR0.

◊ Denominator of the SNR depends on the energy in h(t).
◊ The maximum output SNR over h(t) is obtained by 

maximizing the numerator subject to the constraint that the 
denominator is held constant.
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Matched-Filter Demodulator
◊ Proof: (cont.)

◊ Cauchy-Schwarz inequality: if g1(t) and g2(t) are finite-energy 
signals, then

with equality when g1(t)=Cg2(t) for any arbitrary constant C.
◊ If we set g1(t)=h1(t) and g2(t)=s(T−t), it is clear that the SNR is 

maximized when  h(t)=Cs(T–t).
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Matched-Filter Demodulator
◊ Proof: (cont.)

◊ The output (maximum) SNR obtained with the matched filter 
is:

◊ Note that the output SNR from the matched filter depends on 
the energy of the waveform s(t) but not on the detailed 
characteristics of s(t).
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Matched-Filter Demodulator
◊ Frequency-domain interpretation of the matched filter

◊ Since h(t)=s(T–t), the Fourier transform of this relationship is:

◊ The matched filter has a frequency response that is the complex 
conjugate of the transmitted signal spectrum multiplied by the 
phase factor e-j2πfT (sampling delay of T).

◊ In other worlds, |H( f )|=|S( f )|, so that the magnitude response of 
the matched filter is identical to the transmitted signal spectrum.

◊ On the other hand, the phase of H( f ) is the negative of the phase 
of S( f ).
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Matched-Filter Demodulator

◊ Frequency-domain interpretation of the matched filter
◊ If the signal s(t) with spectrum S( f ) is passed through the 

matched filter, the filter output has a spectrum
Y( f )=|S( f )|2e-j2πfT.

◊ The output waveform is:

◊ By sampling the output of the matched filter at t = T, we obtain 
(from Parseval’s relation):

◊ The noise at the output of the matched filter has a power spectral 
density (See Chapter 2, Page 109)
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Matched-Filter Demodulator

◊ Frequency-domain interpretation of the matched filter
◊ The total noise power at the output of the matched filter is

◊ The output SNR is simply the ratio of the signal power Ps , given 
by                  , to the noise power Pn.
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Matched-Filter Demodulator

◊ Example:
◊ M=4 biorthogonal signals are constructed from the two 

orthogonal signals shown in the following figure for transmitting 
information over an AWGN channel. The noise is assumed to 
have a zero-mean and power spectral density ½ N0. 
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Matched-Filter Demodulator

◊ Example: (cont.)
◊ The M=4 biorthogonal signals have dimensions N=2 (shown in 

figure a): 

◊ The impulse responses of the two matched filters are (figure b):
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Matched-Filter Demodulator

◊ Example: (cont.)
◊ If s1(t) is transmitted, the responses of the two matched filters are 

as shown in figure c, where the signal amplitude is A.
◊ Since y1(t) and y2(t) are sampled at t=T, we observe that

y1S (T)=              , y2S(T)=0.

◊ From equation Page 28, we have ½A2T=ε and the received vector 
is:

where n1(t)=y1n(T) and n2=y2n(T) are the noise components at the 
outputs of the matched filters, given by
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Matched-Filter Demodulator

◊ Example: (cont.)
◊ Clearly, E(nk)=E[ykn(T)] and their variance is 

◊ Observe that the SNR0 for the first matched filter is 
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Matched-Filter Demodulator

◊ Example: (cont.)
◊ This result agrees with our previous result.
◊ We can also note that the four possible outputs of the two 

matched filters, corresponding to the four possible 
transmitted signals are:
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The Optimum Detector
◊ Our goal is to design a signal detector that makes a decision on the 

transmitted signal in each signal interval based on the observation of 
the vector r in each interval such that the probability of a correct 
decision is maximized.

◊ We assume that there is no memory in signals transmitted in 
successive signal intervals.

◊ We consider a decision rule based on the computation of the 
posterior probabilities defined as

P(sm|r)≡P(signal sm was transmitted|r),   m=1,2,…,M.

◊ The decision criterion is based on selecting the signal corresponding 
to the maximum of the set of posterior probabilities { P(sm|r)}. This 
decision criterion is called the maximum a posterior probability 
(MAP) criterion.
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The Optimum Detector
◊ Using Bayes’ rule, the posterior probabilities may be expressed as

where P(sm) is the a priori probability of the mth signal being 
transmitted.

◊ The denominator of (A), which is independent of which signal is 
transmitted, may be expressed as 

◊ Some simplification occurs in the MAP criterion when the M signal 
are equally probable a priori, i.e., P(sm)=1/M.

◊ The decision rule based on finding the signal that maximizes P(sm|r) 
is equivalent to finding the signal that maximizes P(r|sm).
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The Optimum Detector
◊ The conditional PDF P(r|sm) or any monotonic function of it is 

usually called the likelihood function.
◊ The decision criterion based on the maximum of P(r|sm) over the M

signals is called maximum-likelihood (ML) criterion.
◊ We observe that a detector based on the MAP criterion and one that 

is based on the ML criterion make the same decisions as long as a 
priori probabilities P(sm) are all equal.

◊ In the case of an AWGN channel, the likelihood function p(r|sm) is 
given by:
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The Optimum Detector
◊ The maximum of ln p(r|sm) over sm is equivalent to finding the signal 

sm that minimizes the Euclidean distance:

◊ We called D(r,sm), m=1,2,…,M, the distance metrics.

◊ Hence, for the AWGN channel, the decision rule based on the ML 
criterion reduces to finding the signal sm that is closest in distance to 
the receiver signal vector r.

◊ We shall refer to this decision rule as minimum distance detection.
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The Optimum Detector
◊ Expanding the distance metrics:

◊ The term || r||2 is common to all distance metrics, and, hence, it may 
be ignored in the computations of the metrics.

◊ The result is a set of modified distance metrics.

◊ Note that selecting the signal sm that minimizes D'(r, sm ) is 
equivalent to selecting the signal that maximizes the metrics          
C(r, sm)= –D'(r, sm ),
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The Optimum Detector
◊ The term r⋅sm represents the projection of the signal vector onto each 

of the M possible transmitted signal vectors.
◊ The value of each of these projection is a measure of the correlation 

between the receiver vector and the mth signal.  For this reason, we 
call C(r, sm), m=1,2,…,M, the correlation metrics for deciding 
which of the M signals was transmitted.

◊ Finally, the terms || sm||2 =εm, m=1,2,…,M, may be viewed as bias 
terms that serve as compensation for signal sets that have unequal 
energies.

◊ If all signals have the same energy, || sm||2 may also be ignored.
◊ Correlation metrics can be expressed as:
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The Optimum Detector
◊ These metrics can be generated by a demodulator that cross-

correlates the received signal r(t) with each of the M possible 
transmitted signals and adjusts each correlator output for the bias in 
the case of unequal signal energies.
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The Optimum Detector
◊ We have demonstrated that the optimum ML detector computes a set 

of M distances D(r,sm) or D'(r,sm) and selects the signal 
corresponding to the smallest (distance) metric.

◊ Equivalently, the optimum ML detector computes a set of M
correlation metrics C(r, sm) and selects the signal corresponding to 
the largest correlation metric.

◊ The above development for the optimum detector treated the 
important case in which all signals are equal probable.  In this case, 
the MAP criterion is equivalent to the ML criterion.

◊ When the signals are not equally probable, the optimum MAP 
detector bases its decision on the probabilities given by:
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The Optimum Detector

◊ Example:
◊ Consider the case of binary PAM signals in which the two 

possible signal points are s1 = −s2 = ,, where εb is the energy 
per bit.  The priori probabilities are P(s1)=p and P(s2)=1-p.  Let 
us determine the metrics for the optimum MAP detector when the 
transmitted signal is corrupted with AWGN.

◊ The receiver signal vector for binary PAM is: 

where yn(T) is a zero mean Gaussian random variable with 
variance                .
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The Optimum Detector

◊ Example: (cont.)
◊ The conditional PDF P(r|sm) for two signals are 

◊ Then the metrics PM(r,s1) and PM(r,s2) are
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The Optimum Detector

◊ Example: (cont.)
◊ If PM(r,s1) > PM(r,s2), we select s1 as the transmitted signal: 

otherwise, we select s2.  This decision rule may be expressed as:
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The Optimum Detector

◊ Example: (cont.)
◊ The threshold is                   , denoted by τh, divides the real line 

into two regions, say R1 and R2, where R1 consists of the set of 
points that are greater than τh and  R2 consists of the set of points 
that are less than τh.

◊ If                , the decision is made that s1 was transmitted.
◊ If                , the decision is made that s2 was transmitted.
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The Optimum Detector

◊ Example: (cont.)
◊ The threshold τh depends on N0 and p.  If p=1/2, τh=0.
◊ If  p>1/2, the signal point s1 is more probable and, hence, τh<0.  

In this case, the region R1 is larger than R2 , so that s1 is more 
likely to be selected than s2.

◊ The average probability of error is minimized
◊ It is interesting to note that in the case of unequal priori 

probabilities, it is necessary to know not only the values of the 
priori probabilities but also the value of the power spectral 
density N0 , or equivalently, the noise-to-signal ratio, in order to 
compute the threshold.

◊ When p=1/2, the threshold is zero, and knowledge of N0 is not required 
by the detector.
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The Optimum Detector
◊ Proof of “the decision rule based on the maximum-likelihood 

criterion minimizes the probability of error when the M signals are 
equally probable a priori”.
◊ Let us denote by Rm the region in the N-dimensional space for 

which we decide that signal sm(t) was transmitted when the vector 
r=[r1r2….. rN] is received.

◊ The probability of a correct decision given that sm(t) was 
transmitted is:

◊ The average probability of a correct decision is:

◊ Note that P(c) is maximized by selecting the signal sm if p(r|sm) is 
larger than p(r|sk) for all m≠k.   Q.E.D.
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The Optimum Detector
◊ Similarly for the MAP criterion, when the M signals are not equally 

probable, the average probability of a correct decision is 

◊ In order for P (c) to be as large as possible, the points that are to be 
included in each particular region Rm are those for which P(sm|r)  
exceeds all the other posterior probabilities. Q.E.D.

◊ We conclude that MAP criterion maximize the probability of correct 
detection.
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Performance of the Optimum Receiver for 
Memoryless Modulation

◊ Probability of Error for Binary Modulation
◊ Probability of Error for M-ary Orthogonal Signals
◊ Probability of Error for M-ary Biorthogonal Signals
◊ Probability of Error for M-ary PAM
◊ Probability of Error for M-ary PSK
◊ Differential PSK (DPSK) and Its Performance
◊ Probability of Error for QAM
◊ Comparison of Digital Modulation Methods
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Probability of Error for Binary Modulation

◊ Let us consider binary PAM signals where the two signal waveforms 
are s1(t)=g(t) and s1(t)= −g(t), and g(t) is an arbitrary pulse that is 
nonzero in the interval 0≤ t ≤Tb and zero elsewhere.

◊ Since s1(t)= −s2(t), these signals are said to be antipodal.
◊ The energy in the pulse g(t) is εb.
◊ PAM signals are one-dimensional, and, their geometric 

representation is simply the one-dimensional vector:
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Probability of Error for Binary Modulation

◊ Let us assume that the two signals are equally likely and that signal  
s1(t) was transmitted.  Then, the received signal from the (matched 
filter or correlation) demodulator is 

where n represents the additive Gaussian noise component, which 
has zero mean and variance               . 

◊ In this case, the decision rule based on the correlation metric given 
by                                         (Page 39) compares r with the threshold 
zero.  If r >0, the decision is made in favor of s1(t), and if r<0, the 
decision is made that s2(t) was transmitted.
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Probability of Error for Binary Modulation

◊ The two conditional PDFs of r are:
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Probability of Error for Binary Modulation

◊ Given that s1(t) was transmitted, the probability of error is simply the 
probability that r<0. 
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Probability of Error for Binary Modulation

◊ If we assume that s2(t) was transmitted,                     and the 
probability that r>0 is also                                    . Since the signal 
s1(t) and s2(t) are equally likely to be transmitted, the average 
probability of error is

◊ Two important characteristics of this performance measure:
◊ First, we note that the probability of error depends only on the 

ratio εb /N0.
◊ Secondly, we note that. 2εb /N0 is also the output SNR0 from the 

matched-filter (and correlation) demodulator.
◊ The ratio εb /N0 is usually called the signal-to-noise ratio per bit.
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Probability of Error for Binary Modulation

◊ We also observe that the probability of error may be expressed in 
terms of the distance between that the two signals s1and s2 .

◊ From Page 52, we observe that the two signals are separated by the 
distance d12=2      .  By substituting                into Equation (A),we 
obtain

◊ This expression illustrates the dependence of the error probability on 
the distance between the two signals points. 
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Probability of Error for Binary Modulation

◊ Error probability for binary orthogonal signals
◊ The signal vectors s1and s2 are two-dimensional.

where εb denote the energy for each of the waveforms.  Note that the 
distance between these signal points is                  .   

57

12 2 bd ε=

1

2 b

[    0]

[0   ]
bs

s

ε

ε

=

=



◊ Error probability for binary orthogonal signals
◊ To evaluate the probability of error, let us assume that s1 was 

transmitted.  Then, the received vector at the output of the 
demodulator is                             .

◊ We can now substitute for r into the correlation metrics given by 
to obtain C(r, s1) and C(r, s2).

◊ The probability of error is the probability that C(r, s2) > C(r, s1).
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Probability of Error for Binary Modulation

◊ Error probability for binary orthogonal signals
◊ Since n1 and n2 are zero-mean statistically independent Gaussian 

random variables each with variance ½ N0, the random variable  
x= n2–n1  is zero-mean Gaussian with variance N0.  Hence,

◊ The same error probability is obtained when we assume that s2 is 
transmitted:
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Probability of Error for Binary Modulation

◊ If we compare the probability of error for binary antipodal signals 
with that for binary orthogonal signals, we find that orthogonal 
signals required a factor of 2 increase in energy to achieve the same 
error probability as antipodal signals.

◊ Since 10 log10 2=3 dB, we say that orthogonal signals are 3dB poorer 
than antipodal signals.  The difference of 3dB is simply due to the 
distance between the two signal points, which is                 for 
orthogonal signals, whereas                for antipodal signals.

◊ The error probability versus 10 log10 εb/N0 for these two types of 
signals is shown in the following figure (B).  As observed from this 
figure, at any given error probability, the εb/N0 required for 
orthogonal signals is 3dB more than that for antipodal signals. 
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Probability of Error for Binary Modulation

◊ Probability of error for binary signals
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Probability of Error for M-ary Orthogonal Signals

◊ For equal-energy orthogonal signals, the optimum detector selects 
the signal resulting in the largest cross correlation between the 
received vector r and each of the M possible transmitted signals 
vectors {sm}, i.e.,

◊ To evaluate the probability of error, let us suppose that the signal s1
is transmitted.  Then the received signal vector is 

where εs denotes the symbol energy and n1,n2,…,nM are zero-mean, 
mutually statistically independent Gaussian random variable with 
equal variance               . 
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◊ In this case, the outputs from the bank of M correlations are 

◊ Note that the scale factor εs may be eliminated from the correlator
outputs dividing each output by       .

◊ With this normalization, the PDF of the first correlator output is  
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◊ And the PDFs of the other M−1 correlator outputs are

◊ It is mathematically convenient to first derive the probability that the 
detector makes a correct decision.  This is the probability that r1 is 
larger than each of the other M−1 correlator outputs n2,n3,…, nM.  
This probability may be expressed as

where                                                   denotes the joint probability 
that n2,n3,…, nM are all less than r1, conditioned on any given r1.  
Then this joint probability is averaged over all r1.
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◊ Since the {rm} are statistically independent, the joint probability 
factors into a product of M−1 marginal probabilities of the form:

◊ This probabilities are identical for m=2,3,…,M, and, the joint 
probability under consideration is simply the result in Equation (B) 
raised to the (M−1)th power.  Thus, the probability of a correct 
decision is       
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◊ The probability of a (k-bit) symbol error is

◊ The same expression for the probability of error is obtained when 
any one of the other M−1 signals is transmitted.  Since all the M
signals are equally likely, the expression for PM given above is the 
average probability of a symbol error.

◊ This expression can be evaluated numerically.  
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◊ In comparing the performance of various digital modulation methods, 
it is desirable to have the probability of error expressed in terms of 
the SNR per bit, εb/N0, instead of the SNR per symbol, εs/N0. 

◊ With M=2k, each symbol conveys k bits of information, and hence 
εs= k εb. Thus, Equation (C) may be expressed in terms of εb/N0 by 
substituting for εs.

◊ It is also desirable to convert the probability of a symbol error into 
an equivalent probability of a binary digit error. For equiprobable
orthogonal signals, all symbol errors are equiprobable and occur 
with probability 
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◊ Furthermore, there are       ways in which n bits out of k may be in 
error.  Hence, the average number of bit errors per k-bit symbol is

and the average bit error probability is just the result in Equation (D) 
divided by k, the number of bits per symbol. Thus,

◊ The graphs of the probability of a binary digit error as a function of 
the SNR per bit, εb/N0, are shown in Figure (C) for M=2,4,8,16,32, 
and 64. This figure illustrates that, by increasing the number M of 
waveforms, one can reduce the SNR per bit required to achieve a 
given probability of a bit error.
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◊ For example, to achieve a 
Pb=10–5, the required SNR 
per bit is a little more than 
12dB for M=2, but if M is 
increased to 64 signal 
waveforms, the required SNR 
per bit is approximately 6dB. 
Thus, a savings of over 6dB 
is realized in transmitter 
power required to achieve a 
Pb=10–5  by increasing M
from M=2 to M=64.  

69 Figure (C)

Probability of Error for M-ary Orthogonal Signals



◊ What is the minimum required εb/N0 to achieve an arbitrarily small 
probability of error as M→∞?

◊ A union bound on the probability of error.
◊ Let us investigate the effect of increasing M on the probability of 

error for orthogonal signals.
◊ To simplify the mathematical development, we first derive an 

upper bound on the probability of a symbol error that is much 
simpler than the exact form given in the following equation:
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◊ A union bound on the probability of error (cont.)
◊ Recall that the probability of error for binary orthogonal signals 

is given by:

◊ Now, if we view the detector for M orthogonal signals as one that 
makes M −1 binary decisions between the correlator outputs 
C(r,s1) that contains the signal and the other M−1 correlator
outputs C(r,sm), m=2,3,…,M, the probability of error is upper-
bounded by union bound of the M −1 events. That is, if Ei
represents the event that C(r,si)> C(r,s1) for i≠1, then we 
have                                          . Hence, 
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◊ A union bound on the probability of error(cont.)
◊ This bound can be simplified further by upper-bounding     

◊ We have

thus,

◊ As k→∞ or equivalently, as M→∞, the probability of error 
approaches zero exponentially, provided that εb/N0 is greater than 
2ln 2,
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◊ A union bound on the probability of error(cont.)
◊ The simple upper bound on the probability of error given by 

Equation (F) implies that, as long as SNR>1.42 dB, we can 
achieve an arbitrarily low PM..

◊ However, this union bound is not a very tight upper bound as a 
sufficiently low SNR due to the fact that upper bound for the Q 
function  in Equation (E) is loose.

◊ In fact, by more elaborate bounding techniques, it can be shown 
that the upper bound in Equation (F) is sufficiently tight for 
εb/N0>4 ln2.

◊ For εb/N0<4 ln2, a tighter upper bound on PM is
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◊ A union bound on the probability of error(cont.)
◊ Consequently, PM →0 as k→∞, provided that

◊ Hence, −1.6 dB is the minimum required SNR per bit to achieve 
an arbitrarily small probability of error in the limit as 
k→∞(M→∞). This minimum SNR per bit is called the Shannon 
limit for an additive Gaussian noise channel.
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Probability of Error for M-ary Biorthogonal Signals

◊ As indicated in Chapter 3, a set of M=2k biorthogonal signals are 
constructed from ½ M orthogonal signals by including the negatives 
of the orthogonal signals.  Thus, we achieve a reduction in the 
complexity of the demodulator for the biorthogonal signals relative 
to that for orthogonal signals, since the former is implemented with 
½ M cross correlation or matched filters, whereas the latter required 
M matched filters or cross correlators.

◊ Let us assume that the signal s1(t) corresponding to the vector  
s1=[        0  0…0] was transmitted.  The received signal vector is 

where the {nm} are zero-mean, mutually statistically independent 
and identically distributed Gaussian random variables with 
variance                .
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◊ The optimum detector decides in favor of the signal corresponding 
to the largest in magnitude of the cross correlators

while the sign of this largest term is used to decide whether sm(t) or 
−sm(t) was transmitted.

◊ According to this decision rule, the probability of a correct decision 
is equal to the probability that                        and r1 exceeds |rm|=|nm| 
for m=2,3,… ½ M.  But
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◊ Then, the probability of a correct decision is

from which, upon substitution for p(r1), we obtain

where we have used the PDF of r1 given in Page 63.
◊ The probability of a symbol error PM=1−Pc
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◊ Pc, and PM may be evaluated 
numerically for different values 
of M.  The graph shown in the 
following figure (D) illustrates 
PM as a function of εb/N0, 
where εs=k εb, for M=2,4,8,16 
and 32.
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Fig. (D)



◊ In this case, the probability of error for M=4 is greater than that for 
M=2.  This is due to the fact that we have plotted the symbol error 
probability PM in Figure(D).

◊ If we plotted the equivalent bit error probability, we should find that 
the graphs for M=2 and M=4 coincide. (Why?)

◊ As in the case of orthogonal signals, as M→∞ (k→∞), the minimum 
required εb/N0  to achieve an arbitrarily small probability of error is 
−1.6 dB, the Shannon limit. 
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Probability of Error for M-ary PAM
◊ Recall that M-ary PAM signals are represent geometrically as M

one-dimensional signal points with value :

where
◊ The Euclidean distance between adjacent signal points is              .
◊ Assuming equally probable signals, the average energy is :
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Probability of Error for M-ary PAM
◊ Equivalently, we may characterize these signals in terms of their 

average power, where is :

◊ The average probability of error for M-ary PAM :
◊ The detector compares the demodulator output r with a set of M-1 thresholds, 

which are placed at the midpoints of successive amplitude level and decision is 
made in favor of the amplitude level that is close to r.

◊ We note that if the mth amplitude level is transmitted, the demodulator output 
is     

where the noise variable n has zero-mean and variance
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Probability of Error for M-ary PAM
◊ Assuming all amplitude levels are equally likely a priori, the 

average probability of a symbol error is the probability that the 
noise variable n exceeds in magnitude one-half of the distance 
between levels. 

◊ However, when either one of the two outside levels ±(M-1) is 
transmitted, an error can occur in one direction only.

◊ As a result, we have the error probability:
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Probability of Error for M-ary PAM
◊ From (*) in page 81, we note that

◊ By substituting for         , we obtain the average probability of a 
symbol error for PAM in terms of the average power :

◊ It is customary for us to use the SNR per bit as the basic 
parameter, and since T=kTb and k =log2 M:

where                       is the average bit energy and       is the average SNR 
per bit.
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◊ The case M=2 corresponds 
to the error probability for 
binary antipodal signals.

◊ The SNR per bit increase 
by over 4 dB for every 
factor-of-2 increase in M.

◊ For large M, the additional 
SNR per bit required to 
increase M by a factor of 2 
approaches 6 dB.
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Probability of a symbol error for PAM

Probability of Error for M-ary PAM



Probability of Error for M-ary PSK
◊ Recall from that digital phase-modulated signal waveforms may be 

expressed as:

and have the vector representation:

◊ Since the signal waveforms have equal energy, the optimum detector 
for the AWGN channel computes the correlation metrics
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Probability of Error for M-ary PSK
◊ In other word, the received signal vector r=[r1 r2] is projected onto 

each of the M possible signal vectors and a decision is made in favor 
of the signal with the largest projection.

◊ This correlation detector is equivalent to a phase detector that 
computes the phase of the received signal from r.

◊ We selects the signal vector sm whose phase is closer to r.
◊ The phase of r is 

◊ We will determine the PDF of        , and compute the probability of 
error from it.

◊ Consider the case in which the transmitted signal phase is 
, corresponding to the signal s1(t).
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Probability of Error for M-ary PSK
◊ The transmitted signal vector is                     , and the received signal 

vector has components:  

◊ Because n1 and n2 are jointly Gaussian random variable, it follow 
that r1 and r2 are jointly Gaussian random variable variables with  

◊ The PDF of the phase Θr is obtained by a change in variables from 
(r1,r2) to :
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Probability of Error for M-ary PSK
◊ The joint PDF of  V and Θr :

◊ Integration of                      over the range of V yields

where we define the symbol SNR as
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Probability of Error for M-ary PSK
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Probability density function ( ) for 1, 2, 4,  and 10.
r r Sp γΘ Θ =

becomes 
narrower and more 
peaked about               as 
the SNR       increases. 
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Probability of Error for M-ary PSK
◊ When s1(t) is transmitted, a decision error is made if the noise causes 

the phase to fall outside the range                                   . Hence, the 
probability of a symbol error is 

◊ In general, the integral of                doesn’t reduced to a simple form 
and must be evaluated numerically, except for M =2 and  M =4.

◊ For binary phase modulation, the two signals s1(t) and s2(t) are 
antipodal.  Hence, the error probability is 
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◊ When M = 4, we have in effect two binary phase-modulation signals 
in phase quadrature.

◊ Since there is no crosstalk or interference between the signals on the 
two quadrature carriers, the bit error probability is identical to that of 
M = 2.

◊ Then the symbol error probability for M=4 is determined by noting 
that  

where Pc is the probability of a correct decision for the 2-bit symbol.
◊ There, the symbol error probability for M = 4 is 

( )
2

0

2
2

211





















−=−=

N
QPP b

c
ε

4
0 0

2 211 2 1
2

b b
cP P Q Q

N N
ε ε    

= − = −            



Probability of Error for M-ary PSK

92

◊ For M > 4, the symbol error probability PM  is obtained by 
numerically integrating Equation ( ) r

M

M rM dpP
r

ΘΘ−= ∫− Θ  1
π

π

For large values of 
M, doubling the 
number of phases 
requires an 
additional 6 dB/bit 
to achieve the same 
performance
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◊ An approximation to the error probability for large M and for large 
SNR may be obtained by first approximating             . 

◊ For                                              ,              is well approximated 
as : 

◊ Performing the change in variable from                                   ,
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◊ When a Gray Code is used in the mapping of k-bits symbols into the 
corresponding signal phases, two k-bit symbols corresponding to 
adjacent signal phases differ in only a signal bit.

◊ The most probable error result in the erroneous selection of  an 
adjacent phase to the true one.

◊ Most k-bit symbol error contain only a single-bit error. The 
equivalent bit error probability for M-ary PSK is well approximated 
as :

◊ In practice, the carrier phase is extracted from the received signal by 
performing some nonlinear operation that introduces a phase 
ambiguity. 
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◊ For binary PSK, the signal is often squared in order to remove the 
modulation, and the double-frequency component that is generated is 
filtered and divided by 2 in frequency in order to extract an estimate 
of the carrier frequency and phase φ.
◊ This operation result in a phase ambiguity of 180°in the carrier phase. 

◊ For four-phase PSK, the received signal is raised to the fourth power 
to remove the digital modulation, and the resulting fourth harmonic 
of the carrier frequency is filtered and divided by 4 in order to 
extract the carrier component.
◊ These operations yield a carrier frequency component containing φ, but there  

are phase ambiguities of  ±90° and 180° in the phase estimate. 

◊ Consequently, we do not have an absolute estimate of the carrier 
phase for demodulation.
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◊ The phase ambiguity problem can be overcome by encoding the 
information in phase differences between successive signal 
transmissions as opposed to absolute phase encoding.
◊ For example, in binary PSK, the information bit 1 may be transmitted 

by shifting the phase of carrier by 180° relative to the previous carrier 
phase.  Bit 0 is transmitted by a zero phase shift relative to the phase in 
the previous signaling interval.

◊ In four-phase PSK, the relative phase shifts between successive 
intervals are 0, 90°, 180°, and -90°,corresponding to the information 
bits 00, 01, 11, and 10, respectively.

◊ The PSK signals resulting from the encoding process are said to be 
differentially encoded.
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◊ The detector is a relatively simple phase comparator that compares 
the phase of the demodulated signal over two consecutive interval to 
extract the information. 

◊ Coherent demodulation of differentially encoded PSK results in a 
higher probability of error than that derived for absolute phase 
encoding.

◊ With differentially encoded PSK, an error in the demodulated phase 
of the signal in any given interval will usually result in decoding 
errors over two consecutive signaling intervals.

◊ The probability of error in differentially encoded M-ary PSK is 
approximately twice the probability of error for M-ary PSK with 
absolute phase encoding.
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◊ The received signal of a differentially encoded phase-modulated 
signal in any given signaling interval is compared to the phase of the 
received signal from the preceding signaling interval.

◊ We demodulate the differentially encoded signal by multiplying r(t) 
by cos2πfct and sin2πfct integrating the two products over the 
interval T.

◊ At the kth signaling interval, the demodulator output : 

or equivalently,

where θk is the phase angle of the transmitted signal at the kth
signaling interval, φ is the carrier phase, and nk=nk1+jnk2 is the noise 
vector.
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◊ Similarly, the received signal vector at the output of the demodulator 
in the preceding signaling interval is :

◊ The decision variable for the phase detector is the phase difference 
between these two complex numbers.  Equivalently, we can project 
rk onto rk-1 and use the phase of the resulting complex number :

which, in the absence of noise, yields the phase differenceθk-θk-1.
◊ Differentially encoded PSK signaling that is demodulated and 

detected as described above is called differential PSK (DPSK).
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Block diagram of DPSK demodulator

If the pulse g(t) is rectangular, the matched filter 
may be replaced by integrate-and-dump filter
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◊ The error probability performance of a DPSK demodulator and 
detector 
◊ The derivation of the exact value of the probability of error for 

M-ary DPSK is extremely difficult, except for M = 2.
◊ Without loss of  generality, suppose the phase difference 

θk-θk-1=0. Furthermore, the exponential factor e-j(θk-1-φ)

and ej(θk-φ) can be absorbed into Gaussian noise components nk-1
and nk, without changing their statistical properties. 

◊ The complication in determining the PDF of the phase is the term 
nkn*k-1.
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◊ However, at SNRs of practical interest, the term nkn*k-1 is small 
relative to the dominant noise term       (nk+n*k-1).

◊ We neglect the term nkn*k-1 and normalize rkr*k-1 by dividing 
through by        , the new set of decision metrics becomes : 

◊ The variables x and y are uncorrelated Gaussian random variable 
with identical variances σn

2=N0. The phase is 

◊ The noise variance is now twice as large as in the case of PSK. 
Thus we can conclude that the performance of DPSK is 3 dB 
poorer than that for PSK.
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◊ This result is relatively good for M ≥4 , but it is pessimistic for M = 
2 that the loss in binary DPSK relative to binary PSK is less than 3 
dB at large SNR.
◊ In binary DPSK, the two possible transmitted phase differences 

are 0 and π rad.  Consequently, only the real part of rkr*k-1 is need 
for recovering the information.

◊ Because the phase difference the two successive signaling 
intervals is zero, an error is made if Re(rkr*k-1)<0.

◊ The probability that rkr*k-1+r*krk-1<0 is a special case of a 
derivation, given in Appendix B (Proakis 4th Edition).
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◊ Appendix B concerned with the probability that a general 
quadratic form in complex-valued Gaussian random Variable is 
less than zero. According to Equation B-21, we find it depend 
entirely on the first and second moments of the complex-valued 
Gaussian random variables rk and rk-1.

◊ We obtain the probability of error for binary DPSK in the form

where εb/N0 is the SNR per bit.
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◊ The probability of a binary digit error for four-phase DPSK with 
Gray coding can be express in terms of well-known functions, but 
it’s derivation is quite involved.
◊ According to Appendix C, it is expressed in the form :

where Q1(a,b) is the Marcum Q function, I0(x) is the modified 
Bessel function of order zero, and the parameters a and b are 
defined as 
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Differential PSK (DPSK) and Its Performance

◊ Because binary DPSK is only 
slightly inferior to binary PSK 
at large SNR, and DPSK does 
not require an elaborate 
method for estimate the carrier 
phase, it is often used in digital 
communication system.
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Probability of bit error for binary and four-phase 
PSK and DPSK
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◊ Recall that QAM signal waveforms may be expressed as

where Amc and Ams are the information-bearing signal amplitudes of 
the quadrature carriers and g(t) is the signal pulse.

◊ The vector representation of these waveform is 

◊ To determine the probability of error for QAM, we must specify the 
signal point constellation.
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◊ QAM signal sets that have M = 4 points.

◊ Figure (a) is a four-phase modulated signal and Figure (b) is with 
two amplitude levels, labeled A1 and A2, and four phases.

◊ Because the probability of error is dominated by the minimum distance 
between pairs of signal points, let us impose the condition that                  
and we evaluate the average transmitter power, based on the premise 
that all signal points are equally probable. 
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◊ For the four-phase signal, we have 

◊ For the two-amplitude, four-phase QAM, we place the points on 
circles of radii A and        . Thus,               , and 

which is the same average power as the M = 4-phase signal 
constellation.

◊ Hence, for all practical purposes, the error rate performance of 
the two signal sets is the same.

◊ There is no advantage of the two-amplitude QAM signal set over 
M = 4-phase modulation.
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◊ QAM signal sets that have M = 8 points.
◊ We consider the four signal constellations :

The coordinates (Amc,Ams) for each 
signal point are  normalized by A

Assuming that the 
signal points are 
equally probable, the 
average transmitted 
signal power is :
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◊ The two sets (a) and (c) contain signal points that fall on a 
rectangular grid and have Pav = 6A2.

◊ The signal set (b) requires an average transmitted power  Pav= 
6.83A2, and (d) requires Pav = 4.73A2.

◊ The fourth signal set (d) requires approximately 1 dB less power 
than the first two and 1.6 dB less power than the third to achieve 
the same probability of error.

◊ The fourth signal constellation is known to be the best eight-point 
QAM constellation because it requires the least power for a given 
minimum distance between signal points.
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◊ QAM signal sets for M ≥ 16
◊ For 16-QAM, the signal points at a given 

amplitude level are phase-rotated by relative
to the signal points at adjacent amplitude 
levels.

◊ However, the circular 16-QAM constellation 
is not the best 16-point QAM signal constellation 
for the AWGN channel.

◊ Rectangular M-ary QAM signal are most frequently used in practice.  
The reasons are :
◊ Rectangular QAM signal constellations have the distinct 

advantage of being easily generated as two PAM signals 
impressed on phase-quadrature carriers.
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◊ The average transmitted power required to achieve a given 
minimum distance is only slightly greater than that of the best  
M-ary QAM signal constellation.

◊ For rectangular signal constellations in which M = 2k, where k is 
even, the QAM signal constellation is equivalent to two PAM signals 
on quadrature carriers, each having                    signal points.

◊ The probability of error for QAM is easily determined from the 
probability of error for PAM.

◊ Specifically, the probability of a correct decision for the M-ary
QAM system is 

22kM =

( )21 Mc PP −=
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◊ By appropriately modifying the probability of error for M-ary PAM, 
we obtain 

where εav/No is the average SNR per symbol. 
◊ Therefore, the probability of a symbol error for M-ary QAM is

◊ Note that this result is exact for M = 2k when k is even. 

◊ When k is odd, there is no equivalent         -ary PAM system.  This is 
no problem, because it is rather easy to determine the error rate for a 
rectangular signal set.
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Probability of Error for QAM
◊ We employ the optimum detector 

that bases its decisions on the 
optimum distance metrics, it is 
relatively straightforward to show 
that the symbol error probability is 
tightly upper-bounded as

for any k ≥ 1, whereεbav/N0 is the  
average SNR per bit.
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◊ For nonrectangular QAM signal constellation, we may upper-bound 
the error probability by use of a union bound : 

where         is the minimum Euclidean distance between signal points.
◊ This bound may be loose when M is large.
◊ We approximate PM by replacing M-1 by Mn, where Mn is the 

largest number of neighboring points that are at distance d
from any constellation point.
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◊ One can compare the digital modulation methods on the basis of the 
SNR required to achieve a specified probability of error.

◊ However, such a comparison would not be very meaningful, unless 
it were made on the basis of some constraint, such as a fixed data 
rate of transmission or, on the basis of a fixed bandwidth.

◊ For multiphase signals, the channel bandwidth required is simply the 
bandwidth of the equivalent low-pass signal pulse g(t) with duration 
T and bandwidth W, which is approximately equal to the reciprocal 
of T. 

◊ Since T=k/R=(log2M)/R, it follows that 
M
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◊ As M is increased, the channel bandwidth required, when the bit rate 
R is fixed, decreases.  The bandwidth efficiency is measured by the 
bit rate to bandwidth ratio, which is

◊ The bandwidth-efficient method for transmitting PAM is single-
sideband.  The channel bandwidth required to transmit the signal is 
approximately equal to 1/2T and, 

this is a factor of 2 better than PSK. 
◊ For QAM, we have two orthogonal carriers, with each carrier having 

a PAM signal.    
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◊ Thus, we double the rate relative to PAM. However, the QAM signal 
must be transmitted via double-sideband. Consequently, QAM and 
PAM have the same bandwidth efficiency when the bandwidth is 
referenced to the band-pass signal.

◊ As for orthogonal signals, if the M = 2k orthogonal signals are 
constructed by means of orthogonal carriers with minimum 
frequency separation of 1/2T, the bandwidth required for 
transmission of k = log2M information bits is 

In the case, the bandwidth increases as M increases.
◊ In the case of biorthogonal signals, the required bandwidth is one-

half of that for orthogonal signals.
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◊ A compact and meaningful 
comparison of modulation 
methods is one based on the 
normalized data rate R/W (bits per 
second per hertz of bandwidth) 
versus the SNR per bit (εb/N0 ) 
required to achieve a given error 
probability.

◊ In the case of PAM, QAM, and 
PSK, increasing M results in a 
higher bit-to-bandwidth ratio R/W.
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◊ However, the cost of achieving the higher data rate is an increase in 
the SNR per bit.

◊ Consequently, these modulation methods are appropriate for 
communication channels that are bandwidth limited, where we 
desire a R/W >1 and where there is sufficiently high SNR to support 
increases in M.
◊ Telephone channels and digital microwave ratio channels are examples 

of such band-limited channels.
◊ In contrast, M-ary orthogonal signals yield a R/W ≤ 1.  As M

increases, R/W decreases due to an increase in the required channel 
bandwidth.

◊ The SNR per bit required to achieve a given error probability 
decreases as M increases.



Comparison of Digital Modulation Methods

122

◊ Consequently, M-ary orthogonal signals are appropriate for power-
limited channels that have sufficiently large bandwidth to 
accommodate a large number of signals.

◊ As M→∞, the error probability can be made as small as desired, 
provided that SNR>0.693 (-1.6dB). This is the minimum SNR per 
bit required to achieve reliable transmission in the limit as the 
channel bandwidth W→∞ and the corresponding R/W→0.

◊ The figure above also shown the normalized capacity of the band-
limited AWGN channel, which is due to Shannon (1948).

◊ The ratio C/W, where C (=R) is the capacity in bits/s, represents the 
highest achievable bit rate-to-bandwidth ratio on this channel.

◊ Hence, it serves the upper bound on the bandwidth efficiency of any 
type of modulation.
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◊ In this section, we consider the design of the optimum receiver for 
carrier modulated signals when the carrier phase is unknown and no 
attempt is made to estimate its value.

◊ Uncertainty in the carrier phase of the receiver signal may be due to 
one or more of the following reasons:
◊ The oscillators that are used at the transmitter and the receiver to generate the 

carrier signals are generally not phase synchronous.
◊ The time delay in the propagation of the signal from the transmitter to the 

receiver is not generally known precisely.

◊ Assuming a transmitted signal of the form

that propagates through a channel with delay t0 will be received as:
( ) ( )[ ]tfj cetgts π2Re=

( ) ( ) ( ) ( )0 02 2 2
0 0 0Re Rec c cj f t t j f t j fs t t g t t e g t t e eπ π π− −   − = − = −  
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◊ The carrier phase shift due to the propagation delay t0 is 

◊ Note that large changes in the carrier phase can occur due to 
relatively small changes in the propagation delay.

◊ For example, if the carrier frequency fc=1 MHz, an uncertainty or a 
change in the propagation delay of 0.5μs will cause a phase 
uncertainty of π rad.

◊ In some channels the time delay in the propagation of the signal 
from the transmitter to the receiver may change rapidly and in an 
apparently random fashion.

◊ In the absence of the knowledge of the carrier phase, we may treat 
this signal parameter as a random variable and determine the form of 
the optimum receiver for recovering the transmitted information 
from the received signal.

02 tfcπφ −=
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◊ We consider a binary communication system that uses the two 
carrier modulated signal s1(t) and s2(t) to transmit the information, 
where:

and slm(t), m=1,2 are the equivalent low-pass signals.
◊ The two signals are assumed to have equal energy                                   

◊ The two signals are characterized by the complex-valued correlation 
coefficient
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◊ The received signal is assumed to be a phase-shifted version of the 
transmitted signal and corrupted by the additive noise 

◊ The received signal may be expressed as 

where
rl(t) is the equivalent low-pass received signal.

◊ This received signal is now passed through a demodulator whose 
sampled output at t =T is passed to the detector.

( ) ( ) ( ){ } ( )2 2Re Rec cj f t j f t
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◊ The optimum demodulator
◊ We have demonstrated that if the received signals was correlated 

with a set of orthogonal functions {fn(t)} that spanned the signal 
space, the outputs from the bank of correlators provide a set of 
sufficient statistics for the detector to make a decision that 
minimizes the probability error.

◊ We also demonstrated that a bank of matched filters could be 
substituted for the bank of correlations.

◊ A similar orthogonal decomposition can be employed for a 
received signal with an unknown carrier phase.

◊ It is mathematically convenient to deal with the equivalent low-
pass signal and to specify the signal correlators or matched filters 
in terms of the equivalent low-pass signal waveforms.
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◊ The optimum demodulator
◊ The impulse response hl(t) of a filter that is matched to the 

complex-valued equivalent low-pass signal sl(t), 0≤t≤T is given 
as hl(t)=sl

*(T-t) and the output of such filter at t=T is simply
where ε is the signal energy.

◊ A similar result is obtained if the signal sl(t) is correlated with 
sl

*(t) and the correlator is sampled signal sl(t) at t=T.

◊ The optimum demodulator for the equivalent low-pass received 
signal sl(t) may be realized by two matcher filters in parallel, one 
matched to sl1(t) and the other to sl2(t).

( ) ε2
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◊ The optimum demodulator
◊ Optimum receiver for binary signals

◊ The output of the matched filters or correlators at the sampling 
instant are the two complex numbers

2,1        , =+= mjrrr msmcm
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◊ The optimum demodulator
◊ Suppose that the transmitted signal is s1(t).  It can be shown that

where ρ is the complex-valued correlation coefficient of two 
signals sl1(t) and sl2(t), which may be expressed as              
ρ=|ρ|exp(jα0).

◊ The random noise variables n1c, n1s, n2c, and n2s are jointly 
Gaussian, with zero-mean and equal variance.

( )
( ) ( )[ ]sc

sc

njnr
njnr

20202

111

sin2cos2
.sin2cos2

+−++−=

+++=

αφρεαφρε
φεφε



Optimum Receiver for Binary Signals

131

◊ The optimum detector
◊ The optimum detector observes the random variables [r1c r1s r2c

r2s]=r, where r1=r1c+jr1s, and r2=r2c+jr2s, and bases its decision 
on the posterior probabilities P(sm|r), m=1,2.

◊ These probabilities may be expressed as 

◊ The optimum decision rule may be expressed as
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◊ The optimum detector
◊ The ratio of PDFs on the left-hand side is the likelihood ratio, 

which we denote as

◊ The right-hand side is the ratio of the two prior probabilities, 
which takes the value of unity when the two signals are equally 
probable.

◊ The probability density functions p(r|s1) and p(r|s2) can be 
obtained by averaging the PDFs p(r|sm,φ) over the PDF of the 
random carrier phase, i.e.,
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◊ The optimum detector
◊ For the special case in which the two signals are orthogonal, i.e., 

ρ=0, the outputs of the demodulator are:

where (n1c, n1s, n2c, n2s) are mutually uncorrelated and, 
statistically independent, zero-mean Gaussian random variable.
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◊ The optimum detector
◊ The joint PDF of r=[r1c r1s r2c r2s] may be expressed as a product 

of the marginal PDFs.
◊ Consequently

where σ2=2εN0.
◊ The uniform PDF for the carrier phase φ (p(φ)=1/2π) represents 

the most ignorance that can be exhibited by the detector.
◊ This is called the least favorable PDF for φ.

2 2
1 1

1 1 1 2 2

2 2
2 2

2 2 1 2 2

( 2 cos ) ( 2 sin )1( , | , ) exp
2 2

1( , | , ) exp
2 2

c s
c s

c s
c s

r rp r r

r rp r r

ε φ ε φφ
πσ σ

φ
πσ σ

 − + −
= − 

 
 +

= − 
 

s

s



Optimum Receiver for Binary Signals

135

◊ The optimum detector
◊ With p(φ)=1/2π, 0≤φ≤2π, substituted into the integral in p(r|sm), 

we obtain:

where I0(x) is the modified Bessel function of zeroth order.
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◊ The optimum detector
◊ By performing a similar integration under the assumption that the 

signal s2(t) was transmitted, we obtain the result 

◊ When we substitute these results into the likelihood ratio given 
by equation Λ(r), we obtain the result (see P.134)

◊ The optimum detector computes the two envelopes             and               
and the corresponding values of the Bessel function                          
and                               to form the likelihood ratio.
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◊ The optimum detector
◊ we observe that this computation requires knowledge of the 

noise variance σ2.
◊ The likelihood ratio is then compared with the threshold 

P(s2)/P(s1) to determine which signal was transmitted.
◊ A significant simplification in the 

implementation of the optimum detector 
occurs when the two signals are equally 
probable.  In such a case the threshold 
becomes unity, and, due to the 
monotonicity of Bessel function shown 
in figure, the optimum detection rule 
simplifies to
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◊ The optimum detector
◊ The optimum detector bases its decision on the two envelopes               

and              , and                , it is called an envelope detector.
◊ We observe that the computation of the envelopes of the received 

signal samples at the output of the demodulator renders the 
carrier phase irrelevant in the decision as to which signal was 
transmitted.

◊ Equivalently, the decision may be based on the computation of 
the squared envelope r1c

2+r1s
2 and r2c

2+r2s
2, in which case the 

detector is call a square-law detector.
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◊ Detection of binary FSK signal
◊ Recall that in binary FSK we employ two different frequencies, 

say f1 and f2=f1+Δf, to transmit a binary information sequence.
◊ The chose of minimum frequency separation Δf = f2 - f1 is 

considered below:

◊ The equivalent low-pass counterparts are:

◊ The received signal may be expressed as:
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◊ Detection of binary FSK signal
◊ Demodulation and square-law detection:
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◊ Detection of binary FSK signal
◊ If the mth signal is transmitted, the four samples at the detector may be 

expressed as:
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◊ Detection of binary FSK signal
◊ If the mth signal is transmitted, the four samples at the detector may be 

expressed as (cont.):
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◊ Detection of binary FSK signal
◊ We observe that when k=m, the sampled values to the detector 

are

◊ We observe that when k≠m, the signal components in the samples 
rkc and rks will vanish, independently of the values of the phase 
shifts φk, provided that the frequency separation between 
successive frequency is Δf = 1/T.

◊ In such case, the other two correlator outputs consist of noise 
only, i.e.,

rkc=nkc,      rks=nks,        k≠m.
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◊ If the equal energy and equally probable signal waveforms are 
represented as 

where slm(t) are the equivalent low-pass signals.
◊ The optimum correlation-type or matched-filter-type demodulator 

produces the M complex-valued random variables

where rl(t) is the equivalent low-pass signals.
◊ The optimum detector, based on a random, uniformly distributed 

carrier phase, computes the M envelopes

or, the squared envelopes |rm|2, and selects the signal with the largest 
envelope.
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◊ Optimum receiver for 
M-ary orthogonal FSK 
signals.
◊ There are 2M

correlators: two for 
each possible 
transmitted frequency.

◊ The minimum 
frequency separation 
between adjacent 
frequencies to 
maintain orthogonality
is Δf = 1/T.
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Demodulation of M-ary signals for 
noncoherent detection

Optimum Receiver for M-ary Orthogonal Signals
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◊ We assume that the M signals are equally probable a priori and that 
the signal s1(t) is transmitted in the signal interval 0≦t≦T.

◊ The M decision metrics at the detector are the M envelopes

where

and 

◊ The additive noise components {nmc} and {nms} are mutually 
statistically independent zero-mean Gaussian variables with equal 
variance σ2=N0/2.
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◊ The PDFs of the random variables at the input to the detector are 

◊ We define the normalized variables
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◊ Clearly, rmc=σRmcosΘm and rms =σRmsinΘm. The Jacobian of this 
transformation is

◊ Consequently,

◊ Finally, by averaging p(Rm,Θm) over Θm, the factor of 2π is 
eliminated.

◊ Thus, we find that R1 has a Rice probability distribution and Rm, 
m=2,3,…,M, are each Rayleigh-distribued.
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◊ The probability of a correct decision is simply the probability that 
R1>R2, and R1>R3,…,and R1>Rm.  Hence,

◊ Because the random variables Rm, m=2,3,…,M, are statistically 
independent and identically distributed, the joint probability 
conditioned on R1 factors into a product of M-1 identical terms.

where                                                                           (*)
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◊ The (M-1)th power may be expressed as

◊ Substitution of this result into Equation (*) in Page 150 and 
integration over x yield the probability of a correct decision as 

where εs/N0 is the SNR per symbol.
◊ The probability of a symbol error, which is Pm=1-Pc, becomes

where εb/N0 is the SNR per bit.
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◊ For binary orthogonal signals (M=2), 
Equation reduces to the simple form

◊ For M>2, we may compute the 
probability of a bit error by making 
use of the relationship 

◊ Figure shows the bit-error probability 
as a function of SNR per bit γb for 
M=2,4,8,16, and 32.
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◊ Just as in the case of coherent detection of M-ary orthogonal signals, 
we observe that for any given bit-error probability, the SNR per bit 
decreases as M increase.

◊ It can be shown that, in the limit as M→∞, the probability of bit 
error Pb can be made arbitrarily small provided that the SNR per bit 
is greater than the Shannon limit of -1.6dB.

◊ The cost for increasing M is the bandwidth required to transmit the 
signals.  

◊ For M-ary FSK, the frequency separation between adjacent 
frequencies is Δf=1/T for signal orthogonality.

◊ The bandwidth required for the M signals is W=M Δf=M/T.

Probability of Error for Envelope Detection 
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◊ The bit rate is R=k/T, where k=log2M.
◊ Therefore, the bit rate-to-bandwidth ratio is 

2log MR
W M

=

Probability of Error for Envelope Detection 
of M-ary Orthogonal Signals
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