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Representation of Band-Pass Signals and Systems

◊ The channel over which the signal is transmitted is limited 
in bandwidth to an interval of frequencies centered about 
the carrier.

◊ Signals and channels (systems) that satisfy the condition 
that their bandwidth is much smaller than the carrier 
frequency are termed narrowband band-pass signals and 
channels (systems).

◊ With no loss of generality and for mathematical 
convenience, it is desirable to reduce all band-pass signals 
and channels to equivalent low-pass signals and channels.
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◊ Suppose that a real-valued signal s(t) has a frequency content 
concentrated in a narrow band of frequencies in the vicinity of 
a frequency fc, as shown in the following figure:

Our object is to develop a mathematical representation of such 
signals.

Spectrum of a band-pass signal.

Representation of Band-Pass Signals and Systems
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◊ A signal that contains only the positive frequencies in s(t) may 
be expressed as:

where S( f ) is the Fourier transform of s(t) and u( f ) is the unit 
step function, and the signal s+(t) is called the analytic signal or 
the pre-envelope of s(t).
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◊ Define:

◊ A filter, called a Hilbert transformer, is defined as:

◊ The signal        may be viewed as the output of the Hilbert 
transformer when excited by the input signal s(t).

◊ The frequency response of this filter is:
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◊ We observe that |H( f )|=1 and the phase response Θ( f )=-π/2 
for f >0 and Θ( f )=π/2 for f <0.  Thus, this filter is basically a 
90 degrees phase shifter for all frequencies in the input signal.

◊ The analytic signal s+(t) is a band-pass signal.  To obtain an 
equivalent low-pass representation, we define:

◊ In general, sl(t) is complex-valued:
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◊ s(t)=x(t)cos2πfct-y(t)sin2πfct is the desired form for the 
representation of a band-pass signal.  The low-frequency signal 
components x(t) and y(t) may be viewed as amplitude 
modulations impressed on the carrier components cos2πfct and 
sin2πfct, respectively.

◊ x(t) and y(t) are called the quadrature components of the band-
pass signal s(t).

◊ s(t) can also be written as:

◊ The low pass signal sl(t) is usually called the complex envelope
of the real signal s(t) and is basically the equivalent low-pass 
signal.
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◊ sl(t) can be also be written as:

◊ s(t) can be represented as:

a(t) is called the envelope of s(t), and θ(t) is called the phase of 
s(t).
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◊ Three equivalent representations of band-pass signals:

◊ The Fourier transform of s(t) is:
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◊ The energy in the signal s(t) is defined as:
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◊ Since the signal s(t) is narrow-band, the real envelope a(t)=|sl(t)| 
or, equivalently, a2(t) varies slowly relative to the rapid 
variations exhibited by the cosine function.

◊ The net area contributed by the second integral is very small 
relative to the value of the first integral, hence, it can be 
neglected. ( ) 21

2 ls t dtε
∞

−∞
= ∫
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◊ A linear filter or system may be described either by its impulse 
response h(t) or by its frequency response H( f ), which is the 
Fourier transform of h(t).  Since h(t) is real, H*(-f )=H( f ), 
because:
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◊

◊ hl(t) is the inverse Fourier transform of Hl( f ).
◊ In general, the impulse response hl(t) of the equivalent low-pass 

system is complex-valued.
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◊ We have shown that narrowband band-pass signals and systems 
can be represented by equivalent low-pass signals and systems.

◊ We demonstrate in this section that the output of a band-pass 
system to a band-pass input signal is simply obtained from the 
equivalent low-pass input signal and the equivalent low-pass 
impulse response of the system.

◊ The output of the band-pass system is also a band-pass signal, 
and, therefore, it can be expressed in the form:

where r(t) is related to the input signal s(t) and the impulse 
response h(t) by the convolution integral.
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◊ The output of the system in the frequency domain is:
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◊ In this section, we extend the representation to sample 
functions of a band-pass stationary stochastic process.  In 
particular, we derive the relations between the correlation 
functions and power spectra of the band-pass signal and the 
correlation function and power spectra of the equivalent low-
pass signal.

◊ Suppose that n(t) is a sample function of a wide-sense 
stationary stochastic process with zero mean and power spectral 
density Φnn( f ).  The power spectral density is assumed to be 
zero outside of an interval of frequencies centered around fc, 
where fc is termed the carrier frequency.  The stochastic 
process n(t) is said to be a narrowband band-pass process if the 
width of the spectral density is much smaller than fc.

Representation of Band-Pass Stationary 
Stochastic Processes
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◊ Under this condition, a sample function of the process n(t) can 
be represented by the following equations:

◊ a(t) is the envelope and θ(t) is the phase of the real-valued signal.
◊ x(t) and y(t) are the quadrature components of n(t).
◊ z(t) is called the complex envelope of n(t).
◊ If n(t) is zero mean, then x(t) and y(t) must also have zero mean values.
◊ The stationarity of n(t) implies that:
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◊ Proof of 
Autocorrelation function of n(t) is:

by using:
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We can obtain:

Since n(t) is stationary, the right-hand side must be independent of t.
As a result,
Therefore,

Note that this equation is identical in form to: 
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◊ The autocorrelation function of the equivalent low-pass process 
z(t)=x(t)+jy(t) is defined as:

Since φxx(τ)=φyy(τ) and φxy(τ)= -φyx(τ) 
we obtain: φzz(τ)=φxx(τ)+ jφyx(τ)

◊ This equation relates the autocorrelation function of the 
complex envelope to the autocorrelation and cross-correlation 
functions of the quadrature components.
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Representation of Band-Pass Stationary 
Stochastic Processes

◊ By combining 

and

we can obtain: φnn(τ)=Re[φzz(τ)e j2πfcτ]
◊ Therefore, the autocorrelation function φnn(τ) of the band-pass 

stochastic process is uniquely determined from the 
autocorrelation function φzz(τ) of the equivalent low-pass 
process z(t) and the carrier frequency fc.

◊ The power density spectrum of the stochastic process n(t) is:
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◊ Properties of the quadrature components
◊

◊
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φzz(τ)=φxx(τ)+ jφyx(τ)
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◊ Representation of white noise
◊ White noise is a stochastic process that is defined to have a flat 

(constant) power spectral density over the entire frequency 
range.  This type of noise can’t be expressed in terms of 
quadrature components, as a result of its wideband character.

◊ In the demodulation of narrowband signals in noise, it is 
mathematically convenient to model the additive noise process 
as white and to represent the noise in terms of quadrature
components.  This can be accomplished by postulating that the 
signals and noise at the receiving terminal have passed through 
an ideal band-pass filter.

Representation of Band-Pass Stationary 
Stochastic Processes
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◊ Representation of white noise (cont.)
◊ The noise resulting from passing the white noise process 

through a spectrally band-pass filter is termed band-pass 
white noise and has the power spectral density:

◊ The band-pass white noise can be represented by:
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◊ Representation of white noise (cont.)
◊ The equivalent low-pass noise z(t) has a power spectral 

density:

◊ The power spectral density for white noise and band-pass 
white noise is symmetric about f =0, so φyx(τ)=0 for all τ.
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◊ We will demonstrate that signals have characteristics that are 
similar to vectors and develop a vector representation for signal 
waveforms.

◊ Vector Space Concepts
◊ A vector v in an n-dimensional space is characterized by its n

components [v1 v2 … vn] and may also be represented as a 
linear combination of unit vectors or basis vectors ei, 1≤i≤n,

◊ The inner product of two n-dimensional vectors is defined as:
1

n

i i
i

v e
=

=∑ν

1 2 1 2
1

n

i i
i

v v
=

⋅ = ∑ν ν

Vector Space Concepts
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◊ A set of m vectors vk, 1≤k≤m are orthogonal if:

◊ The norm of a vector v is denoted by ||v|| and is defined as:

◊ A set of m vectors is said to be orthonormal if the vectors are 
orthogonal and each vector has a unit norm.

◊ A set of m vectors is said to be linearly independent if no one 
vector can be represented as a linear combination of the 
remaining vectors.

◊ Two n-dimensional vectors v1 and v2 satisfy the triangle 
inequality:

0 for all 1 ,  ,  and .i j i j m i j⋅ = ≤ ≤ ≠ν ν

( )1 2 2

1

n

i
i

v
=

= ⋅ = ∑ν ν ν

1 2 1 2+ ≤ +ν ν ν ν

Vector Space Concepts



29

◊ Cauchy-Schwarz inequality:

◊ The norm square of the sum of two vectors may be expressed as:

◊ Linear transformation in an n-dimensional vector space:

◊ In the special case where v’=λv,
the vector v is called an eigenvector and λ is the corresponding 
eigenvalue.

1 2 1 2⋅ ≤ ⋅ν ν ν ν

2 2 2
1 2 1 2 1 22+ = + + ⋅ν ν ν ν ν ν

' A=ν ν
A λ=ν ν

Vector Space Concepts
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◊ Gram-Schmidt procedure for constructing a set of 
orthonormal vectors.
◊ Arbitrarily selecting a vector v1 and normalizing its length:

◊ Select v2 and subtract the projection of v2 onto u1.

◊ Normalize the vector u2’ to unit length.

◊ Selecting v3:

◊ By continuing this procedure, we construct a set of 
orthonormal vectors.

1
1

1

=
νu
ν

( )'
2 2 2 1 1= − ⋅u ν ν u u

'
2

2 '
2

=
uu
u

( ) ( )'
3 3 3 1 1 3 2 2= - -⋅ ⋅u ν v u u v u u

'
3

3 '
3

= uu
u

Vector Space Concepts
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Signal Space Concepts

◊ The inner product of two generally complex-valued signals x1(t) 
and x2(t) is denote by < x1(t),x2(t)> and defined as:

◊ The signals are orthogonal if their inner product is zero.
◊ The norm of a signal is defined as:

◊ A set of m signals are orthonormal if they are orthogonal and 
their norms are all unity.

◊ A set of m signals is linearly independent, if no signal can be 
represented as a linear combination of the remaining signals.

( ) ( ) ( ) ( )1 2 1 2 ,
b

a
x t x t x t x t dt∗= ∫

( ) ( )( )1 22b

a
x t x t dt= ∫
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◊ The triangle inequality for two signals is:

◊ The Cauchy-Schwarz inequality is:

with equality when x2(t)=ax1(t), where a is any complex 
number.

( ) ( ) ( ) ( )1 2 1 2x t x t x t x t+ ≤ +

( ) ( ) ( ) ( )
1 2 1 22 2

1 2 1 2

b b b

a a a
x t x t dt x t dt x t dt∗ ≤∫ ∫ ∫
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◊ Suppose that s(t) is a deterministic, real-valued signal with finite 
energy:

◊ Suppose that there exists a set of functions {fn(t), n=1,2,…,K} 
that are orthonormal in the sense that:

◊ We may approximate the signal s(t) by a weighted linear 
combination of these functions, i.e.,

( ) 2
s s t dtε
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◊ The approximation error incurred is:

◊ The energy of the approximation error:

◊ To minimize the energy of the approximation error, the 
optimum coefficients in the series expansion of s(t) may be 
found by:
◊ Differentiating Equation (*) with respect to each of the coefficients {sk} 

and setting the first derivatives to zero.
◊ Use a well-known result from estimation theory based on the mean-

square-error criterion, which is that the minimum of εe with respect to 
the {sk} is obtained when the error is orthogonal to each of the functions
in the series expansion.

( ) ( ) ( )e t s t s t
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22
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e k k
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◊ Using the second approach, we have:

◊ Since the functions {fn(t)} are orthonormal, we have:

Thus, the coefficients are obtained by projecting the signals s(t) 
onto each of the functions.

◊ The minimum mean square approximation error is:
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◊ When the minimum mean square approximation error εmin=0, 

◊ Under such condition, we may express s(t) as:

◊ When every finite energy signal can be represented by a series 
expansion of the form for which εmin=0, the set of orthonormal
functions {fn(t)} is said to be complete.
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◊ Gram-Schmidt procedure
◊ Constructing a set of orthonormal waveforms from a set of 

finite energy signal waveforms {si(t), i=1,2,…,M}.
◊ Begin with the first waveform s1(t) which has energy ε1.  

The first orthonormal waveform is:

◊ The 2nd waveform is constructed from s2(t) by first 
computing the projection of f1(t) onto s2(t):

◊ Then c12 f1(t) is subtracted from s2(t):
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1

1

s t
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( ) ( )12 2 1c s t f t dt
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◊ Gram-Schmidt procedure (cont.)
◊ If ε2 denotes the energy of f2’(t), the normalized waveform 

that is orthogonal to f1(t) is:

◊ In general, the orthogonalization of the kth function leads to

◊ The orthogonalization process is continued until all the M
signal waveforms have been exhausted and N≤ M
orthonormal waveforms have been constructed.
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◊ Gram-Schmidt procedure (cont.)
◊ Once we have constructed the set of orthonormal waveforms 

{fn(t)}, we can express the M signals {sn(t)} as linear 
combinations of the {fn(t)}:

◊ Each signal may be represented as a point in the N-
dimensional signal space with coordinates {ski, i=1,2,…,N}.
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◊ Gram-Schmidt procedure (cont.)
◊ The energy in the kth signal is simply the square of the 

length of the vector or, equivalently, the square of the 
Euclidean distance from the origin to the point in the N-
dimensional space.

◊ Any signal can be represented geometrically as a point in 
the signal space spanned by the {fn(t)}.

◊ The functions {fn(t)} obtained from the Gram-Schmidt 
procedure are not unique.

◊ If we alter the order in which the orthogonalization of the 
signals {sn(t)} is performed, the orthonormal waveforms 
will be different.

◊ Nevertheless, the vectors {sn(t)} will retain their geometrical 
configuration and their lengths will be invariant to the 
choice of orthonormal functions {fn(t)}.

Orthogonal Expansions of Signals
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◊ Consider the case in which the signal waveforms are band-pass 
and represented as:

◊ Similarity between any pair of signal waveforms is measured 
by the normalized cross correlation:

◊ Complex-valued cross-correlation coefficient ρkm is defined as:
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◊

◊ The Euclidean distance between a pair of signals is defined as:

◊ When εm=εk=ε for all m and k, this expression simplifies to:
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m k
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ε ε
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◊ In the transmission of digital information over a communication 
channel, the modulator is the interface device that maps the digital 
information into analog waveforms that match the characteristics 
of the channel.

◊ The mapping is generally performed by taking blocks of k=log2M
binary digits at a time from the information sequence {an} and 
selecting one of M=2k deterministic, finite energy waveforms 
{sm(t), m=1,2,…,M} for transmission over the channel.

◊ Functional model of passband data transmission system

Representation of Digitally Modulated Signals
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◊ The digital data transmits over a band-pass channel that can be 
linear or nonlinear.

◊ When the mapping is performed under the constraint that a 
waveform transmitted in any time interval depends on one or 
more previously transmitted waveforms, the modulator is said to 
have memory.  Otherwise, the modulator is called memoryless.

◊ In digital passband transmission, the incoming data stream is 
modulated onto a carrier (usually sinusoidal) with fixed frequency 
limits imposed by a band-pass channel of interest.

◊ The modulation process making the transmission possible 
involves switching (keying) the amplitude, frequency, or phase of 
a sinusoidal carrier in some fashion in accordance with the 
incoming data.

◊ There are three basic signaling schemes: amplitude-shift keying 
(ASK), frequency-shift Keying (FSK), and phase-shift keying 
(PSK).

Representation of Digitally Modulated Signals
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◊ Illustrative waveforms for the three basic forms of signaling 
binary information. (a) ASK (b) PSK (c) FSK.

Representation of Digitally Modulated Signals
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◊ Unlike ASK signals, both PSK and FSK signals have a constant 
envelope. This property makes PSK and FSK signals impervious 
to amplitude nonlinearities.

◊ In practice, we find that PSK and FSK signals are preferred to 
ASK signals for passband data transmission over nonlinear 
channels.

◊ Digital modulation techniques may be classified into coherent and
noncoherent techniques, depending on whether the receiver is 
equipped with a phase-recovery circuit or not.

◊ The phase-recovery circuit ensures that the oscillator supplying 
the locally generated carrier wave in the receiver is synchronized 
(in both frequency and phase) to the oscillator supplying the 
carrier wave used to originally modulated the incoming data 
stream in the transmitter.

Representation of Digitally Modulated Signals
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◊ Pulse-amplitude-modulated (PAM) signals
◊ Double-sideband (DSB) signal waveform may be 

represented as:

where Am denote the set of M possible amplitudes corresponding to 
M=2k possible k-bit blocks of symbols.

◊ The signal amplitudes Am take the discrete values:

◊ 2d is the distance between adjacent signal amplitudes.
◊ g(t) is a real-valued signal pulse whose shape influences the 

spectrum of the transmitted signal.
◊ The symbol rate is R/k, Tb=1/R is the bit interval, and T=k/R=kTb is 

the symbol interval.
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◊ Pulse-amplitude-modulated (PAM) signals (cont.)
◊ The M PAM signals have energies:

◊ These signals are one-dimensional and are represented by:

◊ f(t) is defined as the unit-energy signal waveform given as:

◊ Digital PAM is also called amplitude-shift keying (ASK).
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◊ Pulse-amplitude-modulated (PAM) signals (cont.)
◊ Signal space diagram for digital PAM signals:

Memoryless Modulation Methods
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◊ Pulse-amplitude-modulated (PAM) signals (cont.)
◊ Gray encoding: The mapping of k information bits to the 

M=2k possible signal amplitudes may be done in a number 
of ways.  The preferred assignment is one in which the 
adjacent signal amplitudes differ by one binary digit.

◊ The Euclidean distance between any pair of signal points is:

◊ The minimum Euclidean distance between any pair of 
signals is:

( ) ( )2 1 2
2

e
mn m n g m n gd s s A A d m nε ε= − = − = −

( )
min 2e

gd d ε=
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◊ Phase-modulated signals (Binary Phase-Shift Keying)
◊ In a coherent binary PSK system, the pair of signals s1(t) and 

s2(t) used to represent binary symbols 1 and 0, respectively is 
defined by

where 0≤t≤Tb and Eb is the transmitted signal energy per bit.
◊ A pair of sinusoidal waves that differ only in a relative phase-

shift of 180 degrees are referred to as antipodal signals.
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◊ Phase-modulated signals (Binary Phase-Shift Keying)
◊ To ensure that each transmitted bit contains an integral 

number of cycles of the carrier wave, the carrier frequency fc
is chosen equal to nc/Tb for some fixed integer nc.

◊ In the case of binary PSK, there is only one basis function of 
unit energy:

◊ The coordinates of the message points are:
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◊ Phase-modulated signals (Binary Phase-Shift Keying)

Memoryless Modulation Methods



54

◊ Phase-modulated signals (Quadriphase-Shift Keying)
◊ Quadriphase-Shift Keying (QPSK)

where i = 1, 2, 3, 4; E is the transmitted signal energy per 
symbol, and T is the symbol duration.

◊ Equivalently
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◊ Phase-modulated signals (Quadriphase-Shift Keying)
◊ Defined a pair of quadrature carriers:

◊ There are four message points, and the associated signal 
vectors are defined by
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◊ Phase-modulated signals (Quadriphase-Shift Keying)
◊ Each possible value of the phase corresponds to a unique dibit.
◊ For example, we may choose the Gray coding.

Memoryless Modulation Methods
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◊ Phase-modulated signals (Quadriphase-Shift Keying)
◊ Signal space diagram of coherent QPSK system

Memoryless Modulation Methods
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◊ Phase-modulated signals (Quadriphase-Shift Keying)

Memoryless Modulation Methods
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◊ Phase-modulated signals (M-ary PSK)
◊ The M signal waveforms are represented as:

◊ Digital phase modulation is usually called phase-shift 
keying (PSK).
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◊ Phase-modulated signals (M-ary PSK)
◊ Signal space diagram for octaphase shift keying (i.e., M=8)

Memoryless Modulation Methods
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◊ Phase-modulated signals (M-ary PSK)
◊ The signal waveforms have equal energy:

◊ The signal waveforms may be represented as a linear 
combination of two orthonormal signal waveforms:

◊ The two-dimensional vectors sm=[sm1 sm2] are given by:
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◊ Phase-modulated signals (M-ary PSK)
◊ The Euclidean distance between signal points is:

◊ The minimum Euclidean distance corresponds to the case in 
which |m-n|=1, i.e., adjacent signal phases.
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◊ Phase-modulated signals (Offset QPSK)
◊ The carrier phase changes by ±180 degrees whenever both the 

in-phase and quadrature components of the QPSK signal 
changes sign.

◊ This can result in problems for power amplifiers.
◊ The problem may be reduced by using offset QPSK.
◊ In offset QPSK, the bit stream responsible for generating the 

quadrature component is delayed (i.e. offset) by half a symbol 
interval with respect to the bit stream responsible for 
generating the in-phase component.
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◊ Phase-modulated signals (Offset QPSK)
◊ The two basis functions of offset QPSK are defined by

◊ The phase transitions likely to occur in offset QPSK are 
confined to ±90 degrees.

◊ However, ±90 degrees phase transitions in offset QPSK 
occur twice as frequently.
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◊ Phase-modulated signals (Offset QPSK)

Memoryless Modulation Methods
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◊ Phase-modulated signals (π/4-Shifted QPSK)
◊ The carrier phase used for the transmission of successive 

symbols is alternately picked from one of the two QPSK 
constellations in the following figure and then the other.

Memoryless Modulation Methods



67

◊ Phase-modulated signals (π/4-Shifted QPSK)
◊ It follows that a π/4-shifted QPSK signal may reside in any 

one of eight possible phase states:

Memoryless Modulation Methods
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◊ Phase-modulated signals (π/4-Shifted QPSK)
◊ Attractive features of the π/4-shifted QPSK scheme

◊ The phase transitions from one symbol to the next are 
restricted to ±π/4 and ±3π/4.

◊ Envelope variations due to filtering are significantly 
reduced.

◊ π/4-shifted QPSK signals can be noncoherently detected, 
thereby considerably simplifying the receiver design.

◊ Like QPSK signals, π/4-shifted QPSK can be differently 
encoded, in which case we should really speak of π/4-
shifted DQPSK .

◊ π/4-DQPSK is adopted in IS-54/136.

Memoryless Modulation Methods
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◊ Quadrature amplitude modulation (QAM)
◊ Quadrature PAM or QAM: The bandwidth efficiency of 

PAM/SSB can also be obtained by simultaneously 
impressing two separate k-bit symbols from the information 
sequence {an} on two quadrature carriers cos2πfct and 
sin2πfct.

◊ The signal waveforms may be expressed as:
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◊ Quadrature amplitude modulation (QAM) (cont.)
◊ We may select a combination of M1-level PAM and M2-

phase PSK to construct an M=M1M2 combined PAM-PSK 
signal constellation.

Memoryless Modulation Methods
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◊ Quadrature amplitude modulation (QAM) (cont.)
◊ As in the case of PSK signals, the QAM signal waveforms 

may be represented as a linear combination of two 
orthonormal signal waveforms f1(t) and f2(t):

◊ The Euclidean distance between any pair of signal vectors is:
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◊ Quadrature amplitude modulation (QAM) (cont.)
◊ Several signal space diagrams for rectangular QAM:
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min 2e
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◊ Multidimensional signals:
◊ We may use either the time domain or the frequency domain

or both in order to increase the number of dimensions.
◊ Subdivision of time and frequency axes into distinct slots:

Memoryless Modulation Methods
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◊ Orthogonal multidimensional signals
◊ Consider the construction of M equal-energy orthogonal 

signal waveforms that differ in frequency:

◊ This type of frequency modulation is called frequency-shift 
keying (FSK).
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◊ Orthogonal multidimensional signals (cont.)
◊ These waveforms have equal cross-correlation coefficients:

◊ Note that Re(ρkm)=0 when Δf=1/2T and m≠k. => Orthogonal
◊ The minimum frequency separation Δf that guarantees 

orthogonality is Δf=1/2T.
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◊ Biorthogonal signals
◊ A set of M biorthogonal signals can be constructed from M/2 

orthogonal signals by simply including the negatives of the 
orthogonal signals.

◊ The correlation between any pair of waveforms is either ρr=-
1 or 0.

Signal space diagrams for M=4 and M=6 biorthogonal signals.

Memoryless Modulation Methods
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◊ Simplex signals
◊ For a set of M orthogonal waveforms {sm(t)} or their vector 

representation {sm} with mean of:

Simplex signals are obtained by translating the origin of the 
m orthogonal signals to the point    .

◊ The energy per waveform is:

1

1 M

m
m

s s
M =

= ∑

' ,   1, 2,...,m ms s s m M= − =

s

22' 2 1 11m ms s s
M M M

ε ε ε ε  = − = − + = − 
 
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◊ Simplex signals (cont.)
◊ The cross correlation of any 

pair of signals is:

◊ The set of simplex 
waveforms is equally 
correlated and requires less 
energy, by the factor 1-1/M, 
than the set of orthogonal 
waveforms.

( )
' '

' '

1Re
1 1

1             
1

m n
mn

m n

s s M
Ms s

M

ρ ⋅ −
= =

−

= −
−

Signal space diagrams for
M-ary simplex signals.
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◊ Introduction
◊ In this section, we consider a class of digital modulation 

methods in which the phase of the signal is constrained to be 
continuous.

◊ This constraint results in a phase or frequency modulator 
that has memory.

◊ The modulation method is also non-linear.
◊ Continuous-phase FSK (CPFSK)

◊ A conventional FSK signal is generated by shifting the 
carrier by an amount
to reflect the digital information that is being transmitted.

◊ This type (conventional type) of FSK signal is memoryless.

1
2  ,  1, 3, , ( 1),n n nf f I I M= ∆ = ± ± ± −

Non-linear Modulation Methods with Memory
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◊ Continuous-phase FSK (CPFSK) (cont.)
◊ The switching from one frequency to another may be 

accomplished by having M=2k separate oscillators tuned to 
the desired frequencies and selecting one of the M
frequencies according to the particular k-bit symbol that is to 
be transmitted in a signal interval of duration T=k/R seconds.

◊ The reasons why we have CPFSK: (or the defects of 
conventional FSK)
◊ Such abrupt switching from one oscillator output to 

another in successive signaling intervals results in 
relatively large spectral side lobes outside of the main 
spectral band of the signal.

◊ Consequently, this method requires a large frequency band 
for transmission of the signal.

Non-linear Modulation Methods with Memory
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◊ Continuous-phase FSK (CPFSK) (cont.)
◊ Solution:

◊ To avoid the use of signals having large spectral side lobes, 
the information-bearing signal frequency modulates a single 
carrier whose frequency is changed continuously.

◊ The resulting frequency-modulated signal is phase-continuous 
and, hence, it is called continuous-phase FSK (CPFSK) .

◊ This type (continuous-phase type) of FSK signal has memory
because the phase of the carrier is constrained to be continuous.

Non-linear Modulation Methods with Memory
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◊ Continuous-phase FSK (CPFSK) (cont.)
◊ In order to represent a CPFSK signal, we begin with a PAM 

signal:

◊ d(t) is used to frequency-modulate the carrier.
◊ {In} denotes the sequence of amplitudes obtained by mapping 

k-bit blocks of binary digits from the information sequence 
{an} into the amplitude levels ±1,±3,…,±(M-1).

◊ g(t) is a rectangular pulse of amplitude 1/2T and duration T
seconds.

( ) ( )∑ −=
n

n nTtgItd

Non-linear Modulation Methods with Memory



83

◊ Continuous-phase FSK (CPFSK) (cont.)
◊ Equivalent low-pass waveform v(t) is expressed as

◊ fd is the peak frequency deviation, φ0 is the initial phase 
of the carrier.

◊ The carrier-modulated signal may be expressed as

where φ(t;I) represents the time-varying phase of the carrier.

( ) ( )












 += ∫ ∞− 04exp2 φττπε t

d ddTfj
T

tv

( ) ( ) 0
2 cos 2 ; Ics t f t t
T
ε π φ φ= + +  

Non-linear Modulation Methods with Memory



84

◊ Continuous-phase FSK (CPFSK) (cont.)
◊

◊ Note that, although d(t) contains discontinuities, the integral of d(t) is 
continuous. Hence, we have a continuous-phase signal.

◊ θn represents the accumulation (memory) of all symbols up to time nT .
◊ Parameter h is called the modulation index.
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◊ Continuous-phase modulation (CPM)
◊ CPFSK becomes a special case of a general class of 

continuous-phase modulated (CPM) signals in which the 
carrier phase is 

◊ when hk=h for all k, the modulation index is fixed for all symbols.
◊ when hk varies from one symbol to another, the CPM signal is called 

multi-h.  (In such a case, the {hk} are made to vary in a cyclic manner 
through a set of indices.)

◊ The waveform q(t) may be represented in general as the 
integral of some pulse g(t), i.e.,

( ) ( ) ( ); 2 ,      1
n

k k
k

t I I h q t kT nT t n Tφ π
=−∞

= − ≤ ≤ +∑

( ) ( )∫=
t

dgtq
0

ττ
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◊ Continuous-phase modulation (CPM) (cont.)
◊ If g(t)=0 for t >T, the CPM signal is called full response CPM. (Fig a. b.)
◊ If g(t)≠0 for t >T, the modulated signal is called partial response CPM. (Fig c. 

d.)

LREC, L=1, 
results in 
CPFSK

LRC, L=1

LREC, L=2

LRC, L=2
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◊ Continuous-phase modulation (CPM) (cont.)
◊ The CPM signal has memory that is introduced through the phase 

continuity.
◊ For L>1, additional memory is introduced in the CPM signal by 

the pulse g(t).
◊ Three popular pulse shapes are given in the following table.

◊ LREC denotes a rectangular pulse of duration LT. 
◊ LRC denotes a raised cosine pulse of duration LT.
◊ Gaussian minimum-shift keying (GMSK) pulse with 

bandwidth parameter B, which represents the -3 dB 
bandwidth of the Gaussian pulse.

Non-linear Modulation Methods with Memory
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◊ Continuous-phase modulation (CPM) (cont.)
◊ Some commonly used CPM pulse shapes
◊ LREC

◊ LRC

◊ GMSK

( ) ( )

( )

1 0 1
2

0 otherwise

LT
g t LT

 ≤ ≤= 


( ) ( )

( )

1 21 cos 0 1
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0 otherwise
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LT LTg t
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◊ Minimum-shift keying (MSK).
◊ MSK is a special form of binary CPFSK (and, therefore, CPM) in which 

the modulation index h=1/2.
◊ The phase of the carrier in the interval nT ≤ t ≤ (n+1)T is

◊ The modulated carrier signal is

11( ; I) ( )
2

1           ,         ( 1)
2

n

k n
k

n n

t I I q t nT

t nTI nT t n T
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4 2
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Non-linear Modulation Methods with Memory



90

◊ Minimum-shift keying (MSK) (cont.)
◊ The expression indicates that the binary CPFSK signal can be 

expressed as a sinusoid having one of two possible frequencies in 
the interval nT ≤ t ≤ (n+1)T.  If  we define these frequencies as

◊ Then the binary CPFSK signal may be written in the form

1

2

1
4
1

4

c

c

f f
T

f f
T

= +

= −

11( ) cos 2 ( 1)  ,         1, 2
2

i
i i ns t A f t n iπ θ π − = + + − =  
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◊ Minimum-shift keying (MSK) (cont.)
◊ Why binary CPFSK with h=1/2 is called minimum-shift 

keying (MSK)?

◊ Because the frequency separation ∆f =f2−f1=1/2T, and ∆f 
=1/2T is the minimum frequency separation that is necessary 
to ensure the orthogonality of the signals s1(t) and s2(t) over a 
signaling interval of length T.

Non-linear Modulation Methods with Memory
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◊ Minimum-shift keying (MSK) (cont.)
◊ Compare the waveforms for MSK with OQPSK and QPSK (cont.)

Non-linear Modulation Methods with Memory
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◊ Minimum-shift keying (MSK) (cont.)

Non-linear Modulation Methods with Memory
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Spectral Characteristics of Digitally Modulated Signals

◊ In most digital communication systems, the available 
channel bandwidth is limited. 

◊ The system designer must consider the constraints 
imposed by the channel bandwidth limitation in the 
selection of the modulation technique used to transmit the 
information.

◊ From the power density spectrum, we can determine the 
channel bandwidth required to transmit the information-
bearing signal.
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◊ Beginning with the form

where ν(t) is the equivalent low-pass signal.
◊ Autocorrelation function

◊ Power density spectrum

◊ First we consider the general form

where the transmission rate is 1/T = R/k symbols/s and {In} 
represents the sequence of symbols.

2( ) Re ( ) cj f
ss e π τ

υυφ τ φ τ =  

[ ]1( ) ( ) ( )
2ss c cf f f f fυυ υυΦ = Φ − +Φ − −

( ) ( ) 2Re cj f ts t v t e π =  

( ) ( )n
n

t I g t nTυ
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=−∞

= −∑
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◊ Autocorrelation function

◊ We assume the {In} is WSS with mean μi and the autocorrelation 
function
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◊ The second summation

is periodic in the t variable with period T. 
◊ Consequently, φνν(t+τ;t) is also periodic in the t variable with 

period T.  That is

◊ In addition, the mean value of v(t), which is

is periodic with period T.

);();( ttTtTt τφτφ υυυυ +=+++
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◊ Therefore v(t) is a stochastic process having a periodic mean and 
autocorrelation function. Such a process is called a cyclostationary
process or a periodically stationary process in the wide sense.

◊ In order to compute the power density spectrum of a cyclo-
stationary process, the dependence of φνν(t+τ;t) on the t variable 
must be eliminated. Thus,
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◊ We interpret the integral as the time-autocorrelation function of 
g(t) and define it as

◊ Consequently,

◊ The (average) power density spectrum of v(t) is in the form

where G( f ) is the Fourier transform of g(t), and Φii( f ) denotes 
the power density spectrum of the information sequence
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◊ The result illustrates the dependence of the power density 
spectrum of v(t) on the spectral characteristics of the pulse g(t) 
and the information sequence {In}.

◊ That is, the spectral characteristics of v(t) can be controlled by (1) 
design of the pulse shape g(t) and by (2) design of the correlation 
characteristics of the information sequence.

◊ Whereas the dependence of Φνν( f ) on G( f ) is easily understood 
upon observation of equation, the effect of the correlation 
properties of the information sequence is more subtle.

◊ First of all, we note that for an arbitrary autocorrelation φii(m)
the corresponding power density spectrum Φii( f ) is periodic in 
frequency with period 1/T. (see next page)
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◊ In fact, the expression relating the spectrum Φii( f ) to the 
autocorrelation φii(m) is in the form of an exponential Fourier 
series with the {φii(m)} as the Fourier coefficients. 

◊ Second, let us consider the case in which the information symbols 
in the sequence are real and mutually uncorrelated. In this case, 
the autocorrelation function φii(m) can be expressed as (applying 
Chapter 2, page 96,                                                                   )

where       denotes the variance of an information symbol.
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◊ Substitute for φii(m) in equation, we obtain 

◊ The desired result for the power density spectrum of v(t) when 
the sequence of information symbols is uncorrelated.
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◊ The expression for the power density spectrum is purposely 
separated into two terms to emphasize the two different types of 
spectral components.

◊ The first term is the continuous spectrum, and its shape depends only 
on the spectral characteristic of the signal pulse g(t).

◊ The second term consists of discrete frequency components spaced 
1/T apart in frequency. Each spectral line has a power that is 
proportional to |G( f )|2 evaluated at f = m/T.

◊ Note that the discrete frequency components vanish when the 
information symbols have zero mean, i.e., μi=0.  This condition is 
usually desirable for the digital modulation techniques under 
consideration, and it is satisfied when the information symbols are 
equally likely and symmetrically positioned in the complex plane.
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◊ Example  To illustrate the spectral shaping resulting from g(t), 
consider the rectangular pulse shown in figure. The Fourier 
transform of g(t) is

Hence

Thus 
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◊ Example  As a second illustration of the spectral shaping resulting 
from g(t), we consider the raised cosine pulse

its Fourier transform is:
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◊ Example  To illustrate that spectral shaping can also be 
accomplished by operations performed on the input information 
sequence, we consider a binary sequence {bn} from which we 
form the symbols
◊ The {bn} are assumed to be uncorrelated random variables, 

each having zero mean and unit variance. Then the 
autocorrelation function of the sequence {In} is
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◊ Example  (cont.)
Hence, the power density spectrum of the input sequence is

and the corresponding power density spectrum for the (low-pass) 
modulated signal is
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