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◊ Sample space or certain event of a die experiment:

◊ The six outcomes are the sample points of the 
experiment.

◊ An event is a subset of S, and may consist of any 
number of sample points. For example:

◊ The complement of the event A, denoted by   , 
consists of all the sample points in S that are not in 
A:

{ }6,5,4,3,2,1=S

{ }4,2=A
A

{ }6,5,3,1=A

Probability
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◊ Two events are said to be mutually exclusive if they 
have no sample points in common – that is, if the 
occurrence of one event excludes the occurrence of the 
other.  For example:

◊ The union (sum) of two events in an event that consists 
of all the sample points in the two events.  For example:

{ } { }6,3,1      ;4,2 == BA

{ }
{ }

SAA

CBD
C

=
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=



 6,3,2,1
3,2,1

events. exclusivemutually  are    and  AA
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◊ The intersection of two events is an event that consists 
of the points that are common to the two events.  For 
example:

◊ When the events are mutually exclusive, the 
intersection is the null event, denoted as φ.  For 
example:

{ }3,1== CBE 

φ=AA

Probability
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◊ Associated with each event A contained in S is its 
probability P(A).

◊ Three postulations:
◊ P(A)≥0.
◊ The probability of the sample space is P(S)=1. 
◊ Suppose that Ai , i =1, 2, …, are a (possibly infinite) number 

of events in the sample space S such that 

Then the probability of the union of these mutually 
exclusive events satisfies the condition:

,...2,1      ; =≠= jiAA ji φ
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◊ Joint events and joint probabilities (two experiments)
◊ If one experiment has the possible outcomes Ai , i =1,2,…,n, and 

the second experiment has the possible outcomes Bj , j =1,2,…,m, 
then the combined experiment has the possible joint outcomes
(Ai ,Bj), i =1,2,…,n, j =1,2,…,m.

◊ Associated with each joint outcome (Ai ,Bj) is the joint probability
P (Ai ,Bj) which satisfies the condition:

◊ Assuming that the outcomes Bj ,  j =1,2,…,m, are mutually 
exclusive, it follows that:

◊ If all the outcomes of the two experiments are mutually exclusive, 
then:

1),(0 ≤≤ ji BAP
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◊ Conditional probabilities
◊ The conditional probability of the event A given the 

occurrence of the event B is defined as:

provided P(B)>0.
◊

◊

◊

◊

)(
),()|(

BP
BAPBAP =

)()|()()|(),( APABPBPBAPBAP ==

If two events  and  are mutually exclusive, , 
then ( | ) 0.

A B A B
P A B

φ=
=



.1)|( and  have  we, ofsubset  a is  If == BAPBBAAB 

. and  of occurrence ussimultaneo  thedenotes ),(
is,That   . ofy probabilit  theas dinterprete is ),(
BABAP

BABAP 
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◊ Bayes’ theorem:
◊

◊ P(Ai) represents their a priori probabilities and P(Ai|B) is the 
a posteriori probability of Ai conditioned on having observed 
the received signal B.

i 1

If ,  1, 2,..., ,  are mutually exclusive events such that

                                          

and  is an arbitrary event with nonzero probability, then
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◊ Statistical independence
◊

◊

◊ When the events A and B satisfy the relation 
P(A,B)=P(A)P(B), they are said to be statistically independent.

◊ Three statistically independent events A1, A2, and A3 must 
satisfy the following conditions:

).()|( then , of
occurrence on the dependnot  does  of occurrence  theIf

APBAPB
A
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◊

◊ The function X(s) is called a random variable.
◊ Example 1: If we flip a coin, the possible outcomes are head (H) and tail (T), 

so S contains two points labeled H and T.  Suppose we define a function X(s) 
such that:

Thus we have mapped the two possible outcomes of the coin-flipping 
experiment into the two points ( +1,-1) on the real line.

◊ Example 2: Tossing a die with possible outcomes S={1,2,3,4,5,6}.  A random 
variable defined on this sample space may be X(s)=s, in which case the 
outcomes of the experiment are mapped into the integers 1,…,6, or, perhaps, 
X(s)=s2, in which case the possible outcomes are mapped into the integers 
{1,4,9,16,25,36}.

Given an experiment having a sample space  and
elements , we define a funciton ( ) whose domain
is  and whose range is a set of numbers on the real line.

S
s S X s

S
∈





=
=+

=
T)(s          1-
H)(s         1

)(sX

Random Variables, Probability Distributions, and 
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◊ Give a random variable X, let us consider the event {X≤x} where 
x is any real number in the interval (-∞,∞). We write the 
probability of this event as P(X ≤x) and denote it simply by F(x), 
i.e., 

◊ The function F(x) is called the probability distribution function
of the random variable X.

◊ It is also called the cumulative distribution function (CDF).
◊

◊
1)(0 ≤≤ xF

.1)(  and  0)( =∞=−∞ FF

( ) ( ),        F x P X x - x= ≤ ∞ < < ∞

Random Variables, Probability Distributions, and 
Probability Densities
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◊ Examples of the cumulative distribution functions of 
two discrete random variables.

Random Variables, Probability Distributions, and 
Probability Densities
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◊ An example of the cumulative distribution function of a 
continuous random variable.

Random Variables, Probability Distributions, and 
Probability Densities
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◊ An example of the cumulative distribution function of a 
random variable of a mixed type.

Random Variables, Probability Distributions, and 
Probability Densities
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◊ The derivative of the CDF F(x), denoted as p(x), is 
called the probability density function (PDF) of the 
random variable X.

◊ When the random variable is discrete or of a mixed type, 
the PDF contains impulses at the points of discontinuity 
of F(x):

∫
∞−

∞<<∞−=

∞<<∞−=

x

xduupxF

x
dx

xdFxp

      ,)()(

          ,)()(

∑
=

−==
n

i
ii xxxXPxp

1
)()()( δ

Random Variables, Probability Distributions, and 
Probability Densities



17

( )1 2 2 1

2 1 1 2

2 1 1 2

1 2 2 1

Determining the probability that a random variable 
falls in an interval ,  ,  where .

( ) ( ) ( )
( ) ( ) ( )
   ( ) ( ) ( )
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The probability of the event  is simply
the area under the PDF in the range .
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◊ Multiple random variables, joint probability distributions, 
and joint probability densities: (two random variables)
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◊ Multiple random variables, joint probability distributions, and 
joint probability densities: (multidimensional random variables)
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◊ The mean or expected value of X, which characterized 
by its PDF p(x), is defined as:

This is the first moment of random variable X.
◊ The n-th moment is defined as:

◊ Define Y=g(X), the expected value of Y is:
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◊ The n-th central moment of the random variable X is: 

◊ When n=2, the central moment is called the variance
of the random variable and denoted as      :

◊ In the case of two random variables, X1 and X2, with 
joint PDF p(x1,x2), we define the joint moment as:
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◊ The joint central moment is defined as:

◊ If k=n=1, the joint moment and joint central moment
are called the correlation and the covariance of the 
random variables X1 and X2, respectively.

◊ The correlation between Xi and Xj is given by the joint 
moment:
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◊ The covariance between Xi and Xj is given by the joint central 
moment:

◊ The n×n matrix with elements μij is called the covariance matrix
of the random variables, Xi, i=1,2, …, n.
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◊ Two random variables are said to be uncorrelated if 
E(XiXj)=E(Xi)E(Xj)=mimj.

◊ Uncorrelated → Covariance μij = 0.
◊ If Xi and Xj are statistically independent, they are 

uncorrelated.
◊ If Xi and Xj are uncorrelated, they are not necessary

statistically independently.
◊ Two random variables are said to be orthogonal if 

E(XiXj)=0.
◊ Two random variables are orthogonal if they are uncorrelated 

and either one or both of them have zero mean.

Statistical Averages of Random Variables
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◊ Characteristic functions
◊ The characteristic function of a random variable X is 

defined as the statistical average:

◊ Ψ(jv) may be described as the Fourier transform of p(x).
◊ The inverse Fourier transform is:

◊ First derivative of the above equation with respect to v:
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◊ Characteristic functions (cont.)
◊ First moment (mean) can be obtained by:

◊ Since the differentiation process can be repeated, n-th
moment can be calculated by:
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◊ Characteristic functions (cont.)
◊ Determining the PDF of a sum of statistically independent

random variables:
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◊ Characteristic functions (cont.)
◊ The PDF of Y is determined from the inverse Fourier 

transform of ΨY(jv).
◊ Since the characteristic function of the sum of n statistically 

independent random variables is equal to the product of the 
characteristic functions of the individual random variables, it 
follows that, in the transform domain, the PDF of Y is the n-
fold convolution of the PDFs of the Xi.

◊ Usually, the n-fold convolution is more difficult to perform 
than the characteristic function method in determining the PDF 
of Y.

Statistical Averages of Random Variables
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◊ Binomial distribution (discrete):
◊

◊ Let

what is the probability distribution function of Y ?
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◊ Binomial distribution:
◊ The CDF of Y is:

where [y] denotes the largest integer m such that m≤y.
◊ The first two moments of Y are:

◊ The characteristic function is:
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◊ Uniform Distribution
◊ The first two moments of X are:

◊ The characteristic function is:
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◊ Gaussian (Normal) Distribution
◊ The PDF of a Gaussian or normal distributed random variable 

is:

where mx is the mean and σ2 is the variance of the random 
variable.

◊ The CDF is:
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◊ Gaussian (Normal) Distribution
◊ erf( ) and erfc( ) denote the error function and complementary 

error function, respectively, and are defined as:

◊ erf(-x)=-erf(x), erfc(-x)=2-erfc(x), erf(0)=erfc(∞)=0, and
erf(∞)=erfc(0)=1.

◊ For x>mx, the complementary error functions is proportional 
to the area under the tail of the Gaussian PDF.
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◊ Gaussian (Normal) Distribution
◊ The function that is frequently used for the area under the tail 

of the Gaussian PDF is denoted by Q(x) and is defined as:
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◊ Gaussian (Normal) Distribution
◊ The characteristic function of a Gaussian random variable 

with mean mx and variance σ2 is:

◊ The central moments of a Gaussian random variable are:

◊ The ordinary moments may be expressed in terms of the 
central moments as:
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◊ Gaussian (Normal) Distribution
◊ The sum of n statistically independent Gaussian random 

variables is also a Gaussian random variable.
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◊ Chi-square distribution
◊ If Y=X2, where X is a Gaussian random variable, Y has a chi-

square distribution.  Y is a transformation of X.
◊ There are two type of chi-square distribution:

◊ Central chi-square distribution: X has zero mean.
◊ Non-central chi-square distribution: X has non-zero mean.

◊ Assuming X be Gaussian distributed with zero mean and 
variance σ2, we can apply (2.1-47) to obtain the PDF of Y with 
a=1 and b=0;
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◊ Central chi-square distribution
◊ The PDF of Y is:

◊ The CDF of Y is:

◊ The characteristic function of Y is:
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◊ Chi-square (Gamma) distribution with n degrees of 
freedom.
◊

◊ The characteristic function is:

◊ The inverse transform of this characteristic function yields 
the PDF:
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◊ Chi-square (Gamma) distribution with n degrees of 
freedom (cont.).
◊

◊ When n=2, the distribution yields the exponential 
distribution.
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◊ Chi-square (Gamma) distribution with n degrees of 
freedom (cont.).
◊ The PDF of a chi-square distributed random variable for 

several degrees of freedom.

Some Useful Probability Distributions
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◊ Chi-square (Gamma) distribution with n degrees of 
freedom (cont.).
◊ The first two moments of Y are:

◊ The CDF of Y is:
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◊ Chi-square (Gamma) distribution with n degrees of 
freedom (cont.).
◊ The integral in CDF of Y can be easily manipulated into the 

form of the incomplete gamma function, which is tabulated 
by Pearson (1965).

◊ When n is even, the integral can be expressed in closed form.  
Let m=n/2, where m is an integer, we can obtain:
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◊ Non-central chi-square distribution
◊ If X is Gaussian with mean mx and variance σ2, the random 

variable Y=X2 has the PDF:

◊ The characteristic function corresponding to this PDF is:
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◊ Non-central chi-square distribution with n degrees of 
freedom
◊

◊ The characteristic function is:
.  toequal  varianceidentical and ,,...,2,1  ,mean 
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◊ Non-central chi-square distribution with n degrees of 
freedom
◊ The characteristic function can be inverse Fourier 

transformed to yield the PDF:
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◊ Non-central chi-square distribution with n degrees of 
freedom
◊ The CDF is:

◊ The first two moments of a non-central chi-square-
distributed random variable are:
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◊ Non-central chi-square distribution with n degrees of freedom
◊ When m=n/2 is an integer, the CDF can be expressed in 

terms of the generalized Marcum’s Q function:
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◊ Rayleigh distribution
◊ Rayleigh distribution is frequently used to model the statistics 

of signals transmitted through radio channels such as cellular 
radio.

◊ Consider a carrier signal s at a frequency ω0 and with an 
amplitude a:

◊ The received signal sr is the sum of n waves:
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◊ Rayleigh distribution
◊

◊ Because (1) n is usually very large, (2) the individual 
amplitudes ai are random, and (3) the phases θi have a 
uniform distribution, it can be assumed that (from the 
central limit theorem) x and y are both Gaussian variables 
with means equal to zero and variance:
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◊ Rayleigh distribution
◊ Because x and y are independent random variables, the joint 

distribution p(x,y) is

◊ The distribution p(r,θ) can be written as a function of p(x,y) :








 +
−== 2

22

2 2
exp

2
1)()(),(

σπσ
yxypxpyxp









−=

=
−

=
∂∂∂∂
∂∂∂∂

≡

=

2

2

2
exp

2
),(

cossin
sincos

//
//

),(),(

σπσ
θ

θθ
θθ

θ
θ

θ

rrrp

r
r
r

yry
xrx

J

yxpJrp

Some Useful Probability Distributions



52

◊ Rayleigh distribution
◊ Thus, the Rayleigh distribution has a PDF given by:

◊ The probability that the envelope of the received signal does 
not exceed a specified value R is given by the corresponding 
cumulative distribution function (CDF):
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◊ Rayleigh distribution
◊ Mean:

◊ Variance:

◊ Median value of r is found by solving:

◊ Monents of R are:

◊ Most likely value:= max { pR(r) } = σ.
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◊ Rayleigh distribution
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◊ Rayleigh distribution
◊ Probability That Received Signal Doesn’t Exceed A Certain 

Level (R)
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◊ Rayleigh distribution
◊ Mean value:
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◊ Rayleigh distribution:
◊ Mean square value:

2

0
2

2
2

2

2

00
2

2
2

2

2

0

2

0
2

2

2

3

0

22

2
2

exp2

2
exp2

2
exp

2
exp 

2
exp

)(][

σ
σ

σ

σσ

σσσ

=







−⋅−=









−⋅+








−⋅−=









−−=








−=

=

∞

∞∞

∞∞

∞

∫

∫∫

∫

r

drrrrr

rdrdrrr

drrprRE

0-0=0

Some Useful Probability Distributions



58

◊ Rayleigh distribution
◊ Variance:
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◊ Rayleigh distribution
◊ Most likely value

◊ Most Likely Value happens when: dp(r) / dr = 0
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◊ Rayleigh distribution
◊ Characteristic function
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◊ Rayleigh distribution
◊ Characteristic function (cont.)
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◊ Rice distribution
◊ When there is a dominant stationary (non-fading) signal 

component present, such as a line-of-sight (LOS) propagation 
path, the small-scale fading envelope distribution is Rice.
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◊ Rice distribution
◊ By following similar steps described in Rayleigh distribution, 

we obtain:
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◊ Rice distribution
◊ The Rice distribution is often described in terms of a 

parameter K which is defined as the ratio between the 
deterministic signal power and the variance of the multi-path.  
It is given by K=A2/(2σ2) or in terms of dB:

◊ The parameter K is known as the Rice factor and completely 
specifies the Rice distribution.

◊ As A0, K-∞ dB, and as the dominant path decreases in 
amplitude, the Rice distribution degenerates to a Rayleigh 
distribution.
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◊ Rice distribution
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◊ Rice distribution
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◊ Rice distribution
◊

◊ Because (1) n is usually very large, (2) the individual 
amplitudes ai are random, and (3) the phases θi have a 
uniform distribution, it can be assumed that (from the central 
limit theorem) x and y are both Gaussian variables with means 
equal to zero and variance:
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◊ Rice distribution
◊ Because x and y are independent random variables, the joint 

distribution p(x,y) is

◊ The distribution p(r,θ) can be written as a function of p(x,y) :
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◊ Rice distribution
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◊ Rice distribution
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◊ Nakagami m-distribution
◊ Frequently used to characterize the statistics of signals 

transmitted through multi-path fading channels.
◊ PDF is given by Nakagami (1960) as:
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◊ Nakagami m-distribution
◊ The n-th moment of R is:

◊ By setting m=1, the PDF 
reduces to a Rayleigh PDF.
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◊ Lognormal distribution:
◊

◊ The PDF of R is given by:

◊ The lognormal distribution is suitable for modeling the effect 
of shadowing of the signal due to large obstructions, such as 
tall buildings, in mobile radio communications.
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◊ Multivariate Gaussian distribution
◊ Assume that Xi, i=1,2,…,n, are Gaussian random variables 

with means mi, i=1,2,…,n; variances σi
2, i=1,2,…,n; and 

covariances μij, i,j=1,2,…,n. The joint PDF of the Gaussian 
random variables Xi, i=1,2,…,n, is defined as

◊ M denotes the n × n covariance matrix with elements {μij};
◊ x denotes the n × 1 column vector of the random variables;
◊ mx denote the n × 1 column vector of mean values mi, i=1,2,…,n.
◊ M-1 denotes the inverse of M.
◊ x’ denotes the transpose of x.
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◊ Multivariate Gaussian distribution (cont.)
◊ Given v the n-dimensional vector with elements υi, 

i=1,2,…,n, the characteristic function corresponding to the n-
dimentional joint PDF is:
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◊ Bi-variate or two-dimensional Gaussian
◊ The bivariate Gaussian PDF is given by:
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◊ Bi-variate or two-dimensional Gaussian
◊ ρ is a measure of the correlation between X1 and X2.
◊ When ρ=0, the joint PDF p(x1,x2) factors into the product 

p(x1)p(x2), where p(xi), i=1,2, are the marginal PDFs.
◊ When the Gaussian random variables X1 and X2 are 

uncorrelated, they are also statistically independent.  This 
property does not hold in general for other distributions.

◊ This property can be extended to n-dimensional Gaussian 
random variables: if ρij=0 for i≠j, then the random variables Xi, 
i=1,2,…,n, are uncorrelated and, hence, statistically 
independent.
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◊ Chebyshev inequality
◊ Suppose X is an arbitrary random variable with finite mean mx

and finite variance σx
2.  For any positive number δ:

◊ Proof:
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◊ Chebyshev inequality
◊ Another way to view the Chebyshev bound is working with 

the zero mean random variable Y=X-mx.
◊ Define a function g(Y) as:

◊ Upper-bound g(Y) by the quadratic (Y/δ)2, i.e.

◊ The tail probability 
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◊ Chebychev inequality
◊ A quadratic upper bound on g(Y) used in obtaining the tail 

probability (Chebyshev bound)

◊ For many practical applications, the Chebyshev bound is 
extremely loose.
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◊ Chernoff bound
◊ The Chebyshev bound given above involves the area under 

the two tails of the PDF. In some applications we are 
interested only in the area under one tail, either in the interval 
(δ, ∞) or in the interval (-∞, δ).

◊ In such a case, we can obtain an extremely tight upper bound
by over-bounding the function g(Y) by an exponential having 
a parameter that can be optimized to yield as tight an upper 
bound as possible.

◊ Consider the tail probability in the interval (δ, ∞).
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◊ Chernoff bound
◊

◊ The expected value of g(Y) is

◊ This bound is valid for any υ ≥0.
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◊ Chernoff bound
◊ The tightest upper bound is obtained by selecting the value 

that minimizes E(eυ(Y-δ)).
◊ A necessary condition for a minimum is:
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◊ Chernoff bound
◊

◊ An upper bound on the lower tail probability can be obtained 
in a similar manner, with the result that
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◊ Chernoff bound
◊ Example:  Consider the (Laplace) PDF  p(y)=e-|y|/2.

◊ The true tail probability is:
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◊ Chernoff bound
◊ Example (cont.)
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◊ Sum of random variables
◊ Suppose that Xi, i=1,2,…,n, are statistically independent and 

identically distributed (iid) random variables, each having a 
finite mean mx and a finite variance σx

2.  Let Y be defined as 
the normalized sum, called the sample mean:

◊ The mean of Y is 
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Sums of Random Variables and the Central Limit 
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◊ Sum of random variables
◊ The variance of Y is:

◊ An estimate of a parameter (in this case the mean mx) that 
satisfies the conditions that its expected value converges to 
the true value of the parameter and the variance converges to 
zero as n→∞ is said to be a consistent estimate.
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Stochastic Processes

◊ Many of random phenomena that occur in nature are 
functions of time.

◊ In digital communications, we encounter stochastic 
processes in:
◊ The characterization and modeling of signals generated by 

information sources;
◊ The characterization of communication channels used to 

transmit the information;
◊ The characterization of noise generated in a receiver;
◊ The design of the optimum receiver for processing the 

received random signal.
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Stochastic Processes

◊ Introduction
◊ At any given time instant, the value of a stochastic process is 

a random variable indexed by the parameter t.  We denote 
such a process by X(t).

◊ In general, the parameter t is continuous, whereas X may be 
either continuous or discrete, depending on the 
characteristics of the source that generates the stochastic 
process.

◊ The noise voltage generated by a single resistor or a single 
information source represents a single realization of the 
stochastic process.  It is called a sample function.
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Stochastic Processes

◊ Introduction (cont.)
◊ The set of all possible sample functions constitutes an 

ensemble of sample functions or, equivalently, the stochastic 
process X(t).

◊ In general, the number of sample functions in the ensemble is 
assumed to be extremely large; often it is infinite.

◊ Having defined a stochastic process X(t) as an ensemble of 
sample functions, we may consider the values of the process 
at any set of time instants t1>t2>t3>…>tn, where n is any 
positive integer.

◊ ( )
( ).,...,, PDFjoint by their lly statistica zedcharacteri

are ,,...,2,1,  variablesrandom  thegeneral,In 

21 n

i

ttt

it

xxxp

nitXX =≡
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Stochastic Processes

◊ Stationary stochastic processes
◊

◊

◊ When the joint PDFs are different, the stochastic process is 
non-stationary.

( )

( )1 2

Consider another set of  random variables ,

1, 2,..., ,  where  is an arbitrary time shift.  These random

variables are characterized by the joint PDF , ,..., .

i

n

t t i

t t t t t t

n X X t t

i n t

p x x x

+

+ + +

≡ +

=

( ) ( )1 2 1 2

The jont PDFs of the random variables  and 1 2 ,

may or may not be identical.  When they are identical, i.e., when

                  , ,..., , ,...,

for all  and 

i i

n n

t t t

t t t t t t t t t

X X ,i , ,...,n

p x x x p x x x

t

+

+ + +

=

=

all , it is said to be stationary in the strict sense.n
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Stochastic Processes

◊ Averages for a stochastic process are called ensemble averages.
◊

◊

◊
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∞
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Stochastic Processes

◊ Two random variables:
◊ The correlation is measured by the joint moment:

◊ Since this joint moment depends on the time instants t1 and 
t2, it is denoted by φ(t1 ,t2).

◊ φ(t1 ,t2) is called the autocorrelation function of the 
stochastic process.

◊ For a stationary stochastic process, the joint moment is:

◊

◊ Average power in the process X(t): φ(0)=E(Xt
2).

( ) , 1, 2.
it iX X t i≡ =

1 2 1 2 1 2(  ) ( , ) ( ) ( )t tE X X t t t tφ φ φ τ= = − =

( ) ( )1 2 1 2 1 2 1 2
,t t t t t t t tE X X x x p x x dx dx

∞ ∞

−∞ −∞
= ∫ ∫

' '
1 1 1 1 1 1

( ) (  ) ( ) (  ) ( )t t t t t t
E X X E X X E X Xτ τ τ

φ τ φ τ+ + −
− = = = =

(Even Function)
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Stochastic Processes

◊ Wide-sense stationary (WSS)
◊ A wide-sense stationary process has the property that the 

mean value of the process is independent of time (a 
constant) and where the autocorrelation function satisfies 
the condition that φ(t1,t2)=φ(t1-t2).

◊ Wide-sense stationarity is a less stringent condition than 
strict-sense stationarity.

◊ If not otherwise specified, any subsequent discussion in 
which correlation functions are involved, the less stringent 
condition (wide-sense stationarity) is implied.
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Stochastic Processes

◊ Auto-covariance function
◊ The auto-covariance function of a stochastic process is 

defined as:

◊ When the process is stationary, the auto-covariance 
function simplifies to:

◊ For a Gaussian random process, higher-order moments can 
be expressed in terms of first and second moments.  
Consequently, a Gaussian random process is completely 
characterized by its first two moments.

( ) ( ) ( )2
1 2,t t mµ ϕ τ µ τ= − =

( ) ( ) ( ){ }
( ) ( ) ( )

1 21 2 1 2

1 2 1 2

,

,
t tt t E X m t X m t

t t m t m t

µ

φ

   = − −   
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(function of time difference)
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Stochastic Processes

◊ Averages for a Gaussian process
◊ Suppose that X(t) is a Gaussian random process.  At time 

instants t=ti, i=1,2,…,n, the random variables Xti, i=1,2,…,n, 
are jointly Gaussian with mean values m(ti), i=1,2,…,n, and 
auto-covariances:

◊ If we denote the n × n covariance matrix with elements μ(ti,tj) 
by M and the vector of mean values by mx, the joint PDF of 
the random variables Xti, i=1,2,…,n, is given by:

◊ If the Gaussian process is wide-sense stationary, it is also 
strict-sense stationary.

( )
( ) ( )

( ) ( )



 −′−−= −

xxnnxxxp mxMmx
M
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2
1exp
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1,...,, 2/12/21 π

( ) ( )( ) ( )( ), ,    , 1, 2,..., .
i ji j t i t jt t E X m t X m t i j nµ  = − − = 
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Stochastic Processes

◊ Averages for joint stochastic processes
◊ Let X(t) and Y(t) denote two stochastic processes and let 

Xti≡X(ti), i=1,2,…,n, Yt’j
≡Y(t’j), j=1,2,…,m, represent the 

random variables at times t1>t2>t3>…>tn, and 
t’1>t’2>t’3>…>t’m , respectively.  The two processes are 
characterized statistically by their joint PDF:

◊ The cross-correlation function of X(t) and Y(t), denoted by 
φxy(t1,t2), is defined as the joint moment:

◊ The cross-covariance is:
∫ ∫
∞
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∞−
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21212121
),()(),( 21 ttttttttxy dydxyxpyxYXEtt  φ
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t t t t t t
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◊ Averages for joint stochastic processes
◊ When the process are jointly and individually stationary, we 

have φxy(t1,t2)=φxy(t1-t2), and μxy(t1,t2)= μxy(t1-t2):

◊ The stochastic processes X(t) and Y(t) are said to be 
statistically independent if and only if :

for all choices of ti and t’i and for all positive integers n and m.
◊ The processes are said to be uncorrelated if

Stochastic Processes

' ' ' '1 1 1 1 1 1
( ) ( ) ( ) ( ) ( )xy t t yxt t t t

E X Y E X Y E Y Xτ τ τ
φ τ φ τ+ − −

− = = = =

),...,,(),...,,(),...,,,,...,,( ''
2

'
121''

2
'
121 mnmn tttttttttttt yyypxxxpyyyxxxp =  

⇒=      )()(),(
2121 ttxy YEXEttφ 0),( 21 =ttxyµ
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Stochastic Processes
◊ Complex-valued stochastic process

◊ A complex-valued stochastic process Z(t) is defined as:

where X(t) and Y(t) are stochastic processes.
◊ The joint PDF of the random variables Zti≡Z(ti), i=1,2,…,n, is 

given by the joint PDF of the components (Xti, Yti), i=1,2,…,n.  
Thus, the PDF that characterizes Zti, i=1,2,…,n, is:

◊ The autocorrelation function is defined as:
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Stochastic Processes

◊ Averages for joint stochastic processes:
◊ When the processes X(t) and Y(t) are jointly and individually 

stationary, the autocorrelation function of Z(t) becomes:

◊ φZZ(τ)= φ*
ZZ(-τ) because from (**):

)()(),( 2121 τφφφ zzzzzz tttt =−=

' ' ' '1 1 1 1 1 1

1 1 1( ) ( ) ( ) ( ) ( )
2 2 2zz t t zzt t t t

E Z Z E Z Z E Z Zτ τ τ
φ τ φ τ∗ ∗ ∗ ∗

− + +
= = = = −

1 21 2
1( , ) ( )
2zz t tt t E Z Zφ ∗≡



102

Stochastic Processes

◊ Averages for joint stochastic processes:
◊ Suppose that Z(t)=X(t)+jY(t) and W(t)=U(t)+jV(t) are two 

complex-valued stochastic processes.  The cross-correlation 
functions of Z(t) and W(t) is defined as:

◊ When X(t), Y(t),U(t) and V(t) are pairwise-stationary, the 
cross-correlation function become functions of the time 
difference.

◊
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Power Density Spectrum

◊ A signal can be classified as having either a finite (nonzero) 
average power (infinite energy) or finite energy.

◊ The frequency content of a finite energy signal is obtained 
as the Fourier transform of the corresponding time 
function.

◊ If the signal is periodic, its energy is infinite and, 
consequently, its Fourier transform does not exist. The 
mechanism for dealing with periodic signals is to represent 
them in a Fourier series.
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Power Density Spectrum

◊ A stationary stochastic process is an infinite energy 
signal, and, hence, its Fourier transform does not exist.

◊ The spectral characteristic of a stochastic signal is 
obtained by computing the Fourier transform of the 
autocorrelation function.

◊ The distribution of power with frequency is given by 
the function:

◊ The inverse Fourier transform relationship is:

( ) ( )∫
∞

∞−

−=Φ ττφ τπ def fj2

( ) ( )∫
∞

∞−
Φ= dfef fj τπτφ 2
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Power Density Spectrum

◊

◊ Since φ(0) represents the average power of the stochastic signal, 
which is the area under Φ(f ), Φ(f ) is the distribution of power as 
a function of frequency.

◊ Φ( f ) is called the power density spectrum of the stochastic 
process.

◊ If the stochastic process is real, φ(τ) is real and even, and, hence 
Φ( f ) is real and even.

◊ If the stochastic process is complex, φ(τ)=φ*(-τ) and Φ( f ) is 
real because:

( ) ( ) ( ) 00 2 ≥=Φ= ∫
∞

∞− tXEdffφ
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Power Density Spectrum

◊ Cross-power density spectrum
◊ For two jointly stationary stochastic processes X(t) and Y(t), 

which have a cross-correlation function φxy(τ), the Fourier 
transform is:

◊ Φxy( f ) is called the cross-power density spectrum.
◊

◊ If X(t) and Y(t) are real stochastic processes
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∞
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◊ Consider a linear time-invariant system (filter) that is 
characterized by its impulse response h(t) or equivalently, by its 
frequency response H( f ), where h(t) and H( f ) are a Fourier 
transform pair.  Let x(t) be the input signal to the system and let 
y(t) denote the output signal.

◊ Suppose that x(t) is a sample function of a stationary stochastic 
process X(t).  Since convolution is a linear operation performed 
on the input signal x(t), the expected value of the integral is 
equal to the integral of the expected value.

◊ The mean value of the output process is a constant.
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Response of a Linear Time-Invariant System to a 
Random Input Signal
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◊ The autocorrelation function of the output is:

◊ If the input process is stationary, the output is also stationary:
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◊ The power density spectrum of the output process is:

(by making τ0=τ+α-β)
◊ The power density spectrum of the output signal is the product of 

the power density spectrum of the input multiplied by the 
magnitude squared of the frequency response of the system.

( ) ( ) 2j f
yy yyf e dπ τφ τ τ
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◊ When the autocorrelation function φyy(τ) is desired, it is usually 
easier to determine the power density spectrum Φyy(f ) and then 
to compute the inverse transform.

◊ The average power in the output signal is:

◊ Since φyy(0)=E(|Yt|2) , we have:
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◊ Suppose we let |H( f )|2=1 for any arbitrarily small interval f1 ≤ f ≤ 
f2 , and H( f )=0 outside this interval.  Then, we have:

This is possible if an only if Φxx( f )≥0 for all f.

◊ Conclusion: Φxx( f )≥0 for all f.

( )∫ ≥Φ2
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0
f

f xx dff

Response of a Linear Time-Invariant System to a 
Random Input Signal



112

◊ Cross-correlation function between y(t) and x(t)
◊

◊ With t1-t2=τ, we have:

◊ In the frequency domain, we have:
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◊ Discrete-time stochastic process X(n) consisting of an ensemble 
of sample sequences {x(n)} are usually obtained by uniformly 
sampling a continuous-time stochastic process.

◊ The mth moment of X(n) is defined as:

◊ The autocorrelation sequence is:

◊ The auto-covariance sequences is:
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◊ For a stationary process, we have φ(n,k)≡φ(n-k), μ(n,k)≡μ(n-k), 
and

where mx=E(Xn) is the mean value.
◊ A discrete-time stationary process has infinite energy but a 

finite average power, which is given as:

◊ The power density spectrum for the discrete-time process is 
obtained by computing the Fourier transform of φ(n).
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Discrete-Time Stochastic Signals and Systems
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◊ The inverse transform relationship is:

◊ The power density spectrum Φ( f ) is periodic with a
period fp=1.  In other words, Φ( f+k)=Φ( f ) for 
k=0,±1,±2,….

◊ The periodic property is a characteristic of the Fourier 
transform of any discrete-time sequence.

( ) ( )∫− Φ=
21

21

2 dfefn fnj πφ

Discrete-Time Stochastic Signals and Systems
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◊ Response of a discrete-time, linear time-invariant 
system to a stationary stochastic input signal.
◊ The system is characterized in the time domain by its unit 

sample response h(n) and in the frequency domain by the 
frequency response H( f ).

◊ The response of the system to the stationary stochastic input 
signal X(n) is given by the convolution sum:
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Discrete-Time Stochastic Signals and Systems
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◊ Response of a discrete-time, linear time-invariant 
system to a stationary stochastic input signal.
◊ The mean value of the output of the system is:

where H(0) is the zero frequency [direct current (DC)] gain 
of the system.
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Discrete-Time Stochastic Signals and Systems
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◊ The autocorrelation sequence for the output process is:

◊ By taking the Fourier transform of φyy(k), we obtain the 
corresponding frequency domain relationship:

◊ Φyy( f ), Φxx( f ), and H( f ) are periodic functions of 
frequency with period  fp=1.
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Cyclostationary Processes

◊ For signals that carry digital information, we encounter 
stochastic processes with statistical averages that are periodic.

◊ Consider a stochastic process of the form:

where {an} is a discrete-time sequence of random variables with 
mean ma=E(an) for all n and autocorrelation sequence 
φaa(k)=E(a*nan+k)/2.

◊ The signal g(t) is deterministic.
◊ The sequence {an} represents the digital information sequence 

that is transmitted over the communication channel and 1/T
represents the rate of transmission of the information symbols.
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Cyclostationary Processes

◊ The mean value is:

The mean is time-varying and it is periodic with period T.
◊ The autocorrelation function of X(t) is:
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Cyclostationary Processes

◊ We observe that

for k=±1,±2,….  Hence, the autocorrelation function of X(t) is also 
periodic with period T.

◊ Such a stochastic process is called cyclostationary or periodically 
stationary.

◊ Since the autocorrelation function depends on both the variables t
and τ, its frequency domain representation requires the use of a 
two-dimensional Fourier transform.

◊ The time-average autocorrelation function over a single period is 
defined as:

( ) ( ), ,xx xxt kT t kT t tφ τ φ τ+ + + = +

( ) ( )
2

2

1 ,
T

xx xxT
t t dt

T
φ τ φ τ

−
= +∫
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Cyclostationary Processes

◊ Thus, we eliminate the tie dependence by dealing with the 
average autocorrelation function.

◊ The Fourier transform of φxx(τ) yields the average power density 
spectrum of the cyclostationary stochastic process.

◊ This approach allows us to simply characterize cyclostationary
process in the frequency domain in terms of the power spectrum.

◊ The power density spectrum is:

( ) ( ) 2j f
xx xxf e dπ τφ τ τ

∞ −

−∞
Φ = ∫
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