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Probability Gz
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Sample space or certain event of a die experiment:
S =1{,2,3,45,6}

The six outcomes are the sample points of the
experiment.

An event Is a subset of S, and may consist of any
number of sample points. For example:

A=1{2,4}

The complement of the event A, denoted by A,
consists of all the sample points in S that are not In

A A={1356
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Probability

o Two events are said to be mutually exclusive if they
have no sample points in common — that is, Iif the
occurrence of one event excludes the occurrence of the
other. For example:

A={24} B={136]
A and A are mutually exclusive events.

o The union (sum) of two events in an event that consists

of all the sample points in the two events. For example:
C =123}

D=BUC=1{,2,3,6}
AUA=S
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Probability

o The Intersection of two events Is an event that consists
of the points that are common to the two events. For
example:

E=BNC=1{3}

o When the events are mutually exclusive, the
Intersection Is the null event, denoted as ¢. For
example:

ANA=g



Probability

o Assoclated with each event A contained in S IS ItS
probability P(A).

o Three postulations:

o

%

%

P(A)>0.
The probability of the sample space is P(S)=1.
Suppose that A,, 1=1, 2, ..., are a (possibly infinite) number
of events in the sample space S such that

ANA =¢;, i#]j=12..
Then the probability of the union of these mutually
exclusive events satisfies the condition:

)z
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Probability

o Joint events and joint probabilities (two experiments)

o If one experiment has the possible outcomes A;, 1=1,2,...,n, and
the second experiment has the possible outcomes B;, j =1,2,...,m,
then the combined experiment has the possible joint outcomes

(Ai.By), 1=12,....,n, ] =1,2,....m.

I
o Associated with each joint outcome (A;,B;) Is the Joint probability
P (A;,B;) which satisfies the condition:
0<P(A,B;)<1

o Assuming that the outcomes B;, j=1,2,...,m, are mutually
exclusive, it follows that:

ZP(AU Bj) = P('A\)

o If all the outcomes of the two experiments are mutually exclusive,
then: n m

>3 P(A.B,) = P(A)-=1

i=1 j=1
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Probability e

o Conditional probabilities

o The conditional probability of the event A given the
occurrence of the event B is defined as:

p(A|B) = AB)

P(B)
provided P(B)>0.
o P(A,B)=P(A|B)P(B)=P(B|A)P(A)
o P(A, B)isinterpreted as the probability of A(1B. That s,

P(A, B) denotes the simultaneous occurrence of Aand B.
o If two events A and B are mutually exclusive, A(1B = ¢,

then P(A|B) =0.
o If Bisasubset of A, wehave A(1B=BandP(A|B)=1.
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Probability

o Bayes’ theorem:
o IfA, 1=12,...,n, are mutually exclusive events such that

JA =S
=1
and B is an arbitrary event with nonzero probability, then
P(A,B P(B P
P(A [B)— é/;)) __P(BIA)P(A)
Z;,P(BIA,-)P(A,-)
-

P B)=JZZ;P(B,AJ.)=Z;P(B|A) (A)

J

o P(A;) represents their a priori probabilities and P(A;|B) Is the
a posteriori probability of A; conditioned on having observed
the received signal B




Probability

o Statistical independence
o If the occurrence of A does not depend on the occurrence
of B, then P(A|B) =P(A).
o P(A,B)=P(A|B)P(B)=P(A)P(B)
o When the events A and B satisfy the relation
P(A,B)=P(A)P(B), they are said to be statistically independent.

o Three statistically independent events A;, A,, and A; must
satisfy the following conditions:

P(A,A)=P(A)P(A)
P(A, A;) =P(A)P(A;)
P(A,, A;) = P(A,)P(A;)
P(A, A, Ay) = P(A)P(A,)P(A)
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Random Variables, Probability Distributions, and -
Pr'obab|||1'y Densities

o Glven an experiment having a sample space S and
elements s € S, we define a funciton X (s) whose domain

IS S and whose range Is a set of numbers on the real line.

o The function X(s) is called a random variable.

o Example 1: If we flip a coin, the possible outcomes are head (H) and tail (T),
so S contains two points labeled H and T. Suppose we define a function X(s)
such that: X (s) = {+1 (s=H)

-1 (s=T)
Thus we have mapped the two possible outcomes of the coin-flipping
experiment into the two points ( +1,-1) on the real line.

o Example 2: Tossing a die with possible outcomes 5={1,2,3,4,5,6}. A random
variable defined on this sample space may be X(s)=s, in which case the
outcomes of the experiment are mapped into the integers 1,...,6, or, perhaps,
X(s)=s?, in which case the possible outcomes are mapped into the integers
{1,4,9,16,25,36}.
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Random Variables, Probability Distributions, and -
Probablll’rx Densities

o Glve a random variable X, let us consider the event {X<x} where
X 1S any real number in the interval (-00,00). We write the
probability of this event as P(X <x) and denote it simply by F(x),
l.e.,

F(x)=P(X £Xx), -0 < X <00

o The function F(x) is called the probability distribution function
of the random variable X.

o Itis also called the cumulative distribution function (CDF).
® 0<F(x)<1
F(—)=0 and F(x)=1.
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Random Variables, Probability Distributions, and -
Probablll’rx Densities

o Examples of the cumulative distribution functions of
two discrete random variables.

F(x)

P |t s
L]
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Random Variables, Probability Distributions, and -
Probab|||Ty Densities

o An example of the cumulative distribution function of a
continuous random variable.

F(x)
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Random Variables, Probability Distributions, and -
Pr'obab|||1'y Densities

o An example of the cumulative distribution function of a
random variable of a mixed type.
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Random Variables, Probability Distributions, and -
Pr'obab|||1'y Densities &7

o The derivative of the CDF F(x), denoted as p(x), Is
called the probability density function (PDF) of the

random variable X'dF( )
X

P(X) = v
X

— o0 < X< 00

F(X) = jp(u)du, —00 < X < 00

o When the random variable is discrete or of a mixed type,
the PDF contains impulses at the points of discontinuity
of F(x):

() = Y. P(X =X)3(x-X)
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Random Variables, Probability Distributions, and //w
Probability Densities 247
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¥ Determining the probability that a random variable X
falls in an interval (x,x,) , where x, > x..

P(X<x,)=P(X<x)+P(Xx <X <X)
F(X,)=F(X)+P(Xx, <X <X,)

= P <X<x)=F(X,)-F(x)

= p(x)dx

The probability of the event {x < X <x,} is simply
the area under the PDF in the range x, < X <X,.
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o Multiple random variables, joint probability distributions,
and joint probability densities: (two random variables)

Joint CDF: F(x,X,)=P(X,<x,X, <X,)= [Xl_[xz p(u,,u,)du,du,

2

OX,0X,

Joint PDF: p(X;,X,) =

F(Xl’ XZ)

[ p(x)dx = p(x,) [ P04, %,)dx, = p(x,)

The PDFs p(x,) and p(Xx,) obtained from integrating over one
of the variablesare called marginal PDFs.

[ pxx)dwdx, = F(en,oc) =1
Note that : F (—o0,—0)= F(=o0, X, )= F(x,,~0)= 0.
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Random Variables, Probability Distributions, and =
Probability Densities 2\(&77

o Multiple random variables, joint probability distributions, and
joint probability densities: (multidimensional random variables)

Suppose that X, 1 =1.2,...,n,are random variables.
Joint CDF  F (X, Xy,..., X, ) = P(X, <X, X, £ Xy, X, £X)

=77 p(u,,u,.....u,)duydu, . du,
6”

Joint PDFE  p(X;, X,,..., X,) =
Pl ) 0%, 0X,...0X,

F(X,%X,,..0s X))

J-EOOOJ’:X; p(Xl’ XZ""’Xn)dXZdX3 — p(X11X41---; Xn)
F(Xl,oo,oo,x4,...,xn)= F (X, X4, X s X))

F(X11_OO,—OO, Xgpeeny X )= 0.

LN} n
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Statistical Averages of Random Variables

o The mean or expected value of X, which characterized
by its PDF p(x), i1s defined as:

axpmszxmmm
This 1s the first moment of random variable X.
o The n-th moment is defined as:

E(X")= [ x"p(x)dx
o Define Y=g(X), the expected value of Y Is:

E(Y)=E[g(X¥)]=]" g(x) p(x)dx

20



Statistical Averages of Random Variables

o The n-th central moment of the random variable X Is:

E(Y)=E|(X —m, ) |= [* (x=m,)" p(x)dx

o When n=2, the central moment is called the variance
of the random variable and denoted as o

oy =] (x=m)?p(x)dx

of =E(X?)—[E(X)] =E(X?*)—m]
o In the case of two random variables, X; and X,, with
joint PDF p(x4,x,), we define the joint moment as:

E(X X)) = I j X X5 P(X,, X, )dx,dX,



Statistical Averages of Random Variables

o The joint central moment is defined as:
E _(Xl o ml)k (Xz o mz)n]
= _EOOO J_io (Xl - ml)k (Xz - mz)n p(xl’ Xz)dxldxz

o If k=n=1, the joint moment and joint central moment
are called the correlation and the covariance of the

random variables X, and X,, respectively.
o The correlation between X; and X; Is given by the joint

moment: o
E(Xin):j_ j_ X, X; P(X;, X;)dxdx;
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Statistical Averages of Random Variables

o The covariance between X; and X; Is given by the joint central

moment:
Ly = E[(Xi —m, )(Xj _mj)]

= | '_Oooo(xi -m )(xj —m, )o(x., X, )dx;dXx;

=1 1. XX, p(X xj)dxidxj —mm;

Jooo A
=E(X;X;)—mm,
o The nxn matrix with elements y;; Is called the covariance matrix
of the random variables, X;, 1=1,2, ..., n.
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Statistical Averages of Random Variables

o Two random variables are said to be uncorrelated if
E(Xixj):E(Xi)E(Xj):mimj.
o Uncorrelated — Covariance p;; = 0.

o I X;and X; are statistically independent, they are
uncorrelated.

o If X;and X; are uncorrelated, they are not necessary
statistically independently.

o Two random variables are said to be orthogonal if
E(X;X,)=0.
o Two random variables are orthogonal if they are uncorrelated
and either one or both of them have zero mean.

24



Statistical Averages of Random Variables

o Characteristic functions

o The characteristic function of a random variable X is
defined as the statistical average:

E(e™)=y(jv)=] e p(x)dx

o P(Jv) may be described as the Fourier transform of p(x).
o The inverse Fourier transform is:

1 o _ .
X) = — v)e dv
P =-—[ w(iv

o First derivative of the above equation with respect to v:

dW(JV) — JJ-OO XeJVX p(X)dX
dv o0

25



Statistical Averages of Random Variables

o Characteristic functions (cont.)
o First moment (mean) can be obtained by:

o Since the differentiation process can be repeated, n-th
moment can be calculated by:

x-S0

v=0

26



Statistical Averages of Random Variables (7=~

o Characteristic functions (cont.)

o Determining the PDF of a sum of statistically independent
random variables:

Y:ixi = WY(jV)=E(ejVY)=E{eXP(J‘ViXiH
_E{ (’VX )} j J' (He’vxjp(xl,xz, X )dx,dx,...dx_

Since the random variables are statistically independent,

DXy Xy Xp) = POX) P(X,)..P(X,) = wy (jV) = Hl//x(JV)
If X, areiid (independent and identically dlstrlbuted)

=y (V) =, (V]
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Statistical Averages of Random Variables

o Characteristic functions (cont.)

o The PDF of Y Is determined from the inverse Fourier
transform of ?,(jv).

o Since the characteristic function of the sum of n statistically
Independent random variables is equal to the product of the
characteristic functions of the individual random variables, it
follows that, in the transform domain, the PDF of Y is the n-
fold convolution of the PDFs of the X..

o Usually, the n-fold convolution is more difficult to perform
than the characteristic function method in determining the PDF
of Y.

28
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Some Useful Probability Distributions éf/;:,-‘z; 3

SLap>
o Binomial distribution (discrete):

o P(X = o) 1-P(X =1)=p

o Lety ZX where the X.,i =1,2,...,n are statistically iid,

what Is the probability distribution function of Y ?

P(Y = k)=(E]pk(1— p)™ (Ej ) k!(nn!—k)!

PDFof Yis: p(y)= Z P(Y =k)o(y—k)

=i@pka— )™ 3(y—K)

29
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Some Useful Probability Distributions éf/;:,-‘z; 3

SLap>
o Binomial distribution:

o The CDF of Y Is:

F(y)=P(Y <y)= %(Ejpk(l— p)"™*

k=0
where [y] denotes the largest integer m such that m<y.
o The first two moments of Y are:
E(Y)=np
E(Y?)=np(l—- p)+n°p’
o’ =np(l-p)
o The characteristic function is:

w(jv)=@1-p+pe")

30
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Some Useful Probability Distributions ({7 B
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o Uniform Distribution

pix)

o The first two moments of X are: §
E(X):%(a+b) (b = a)
E(XZ):%(a2+b2+ab) © 0 () ’ |

1
o’ = (@-b)’ '

o The characteristic function is: /

_ ejvb . ejva / : g
l//(J V) — “ 0 (h) ’

Jv(b—-a)

31



®

Some Useful Probability Distributions éf/:;l?

Slap>

o Gaussian (Normal) Distribution
o The PDF of a Gaussian or normal distributed random variable

IS:
1 —(x-m,)? /2052
X)=——€ " '
p(x) o
where m, is the mean and o is the variance of the random
variable. (u-m) . du
o The CDF is: 20 V2o
1 X 2 2 X—m, /\/_(7 2
F(X) _ e—(u—mx) /20 du _ —t t
ﬁ,f_w H
i+ 1 erf ( ) 1——erfc(
J_ 20 J_ 2

32



Some Useful Probability Distributions é\ff;‘*ﬁ

o Gaussian (Normal) Distribution

o erf() and erfc( ) denote the error function and complementary
error function, respectively, and are defined as:

erf (x) = _[e‘t dt and erfc(x)= j e dt =1—erf (x)
o erf(-x)=-erf(x), erfc(-x)=2-erfc(x), erf(0)=erfc(«0)=0, and

erf(co)=erfc(0)=1.

o For x>m,, the complementary error functions is proportional
to the area under the tail of the Gaussian PDF.

33
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Some Useful Probability Distributions éf/;:,-‘z; 3

Slap>

o Gaussian (Normal) Distribution

o The function that is frequently used for the area under the tail
of the Gaussian PDF is denoted by Q(x) and is defined as:

T2t :%erfc(i X >0

1
A==, 5]

/\

l=F{x)= —:-'.',I'}{T_m ]
J’-'r::

34
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Some Useful Probability Distributions éf/:;l?

Slap>

o Gaussian (Normal) Distribution

o The characteristic function of a Gaussian random variable
with mean m, and variance 2 is:

- 7 al 1 21252 ' 2 2

W(JV) = j ejv{ g (x-m)"/20 }dx _ pivm-(112)%0
- 2o

o The central moments of a Gaussian random variable are:

1.3---(k=1)c* (even k)
0 (odd k)

o The ordinary moments may be expressed in terms of the
central moments as:

)30
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Some Useful Probability Distributions éf/:;l?

Slap>

o Gaussian (Normal) Distribution

o The sum of n statistically independent Gaussian random
variables is also a Gaussian random variable.

n
Y:ZK
ivm,: —v2o2 jvm, —v2c2 /2
)= Twe ()= Jerm 2 e

i1=1
2 2
where m, = Zmi and o = Zai
=1 =1

Therefore, Y i1s Gaussian - distributed with mean m,

and variance aj.
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o Chi-square distribution

o If Y=X2, where X is a Gaussian random variable, Y has a chi-
square distribution. Y is a transformation of X.

o There are two type of chi-square distribution:
o Central chi-square distribution: X has zero mean.
o Non-central chi-square distribution: X has non-zero mean.

o Assuming X be Gaussian distributed with zero mean and
variance o4, we can apply (2.1-47) to obtain the PDF of Y with
a=1 and b=0;

Px [Xl — \/(y _b)/a]

9% =+y-b)/a]

Px [Xl = _\/(y - b)/ a]
0'1x, =—(y-b)/a]

_|_

Py (y):

37
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Some Useful Probability Distributions é{\@g
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SLap>
o Central chi-square distribution
o The PDF of Y Is:

(y)=——
pr_\/HG

o The CDF of Y is:

e—y/ZO'z’ yZO

1 1 —u/20?
FY(Y):jOy pv(u)du:majoyﬁe # du

o The characteristic function of Y Is:

1

-V _
WY(J ) (1_ j2V02)1/2
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Some Useful Probability Distributions éf/:;l?

Slap>

o Chi-square (Gamma) distribution with n degrees of
freedom.

Y =) X! X, i=12,..,n,arestatistically independent and

Identically distributed (iid) Gaussian random variables with

zero mean and variance .
o The characteristic function is:

(jv) = ——
Wy (1_ jZVGZ)n/Z

o The inverse transform of this characteristic function yields
the PDF: 1
Py () = Y
O'n 2n/2F(2 nj

39
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Some Useful Probability Distributions é//;:,-‘?’%
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o Chi-square (Gamma) distribution with n degrees of
freedom (cont.).
o I'(p)Isthe gamma function, defined as .

C(p)= joootp‘le‘tdt, p>0

r'(p)=(p-1) p an integer >0
1 3 1
o) rf3)a

o When n=2, the distribution yields the exponential
distribution.

40
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Some Useful Probability Distributions {

Stans ™
o Chi-square (Gamma) distribution with n degrees of
freedom (cont.).

o The PDF of a chi-square distributed random variable for
several degrees of freedom.

1

09}
08F n
07}k
06
05F,
04}
03}

02b 7
2,
&

&

/ !
0olg

.

. g -
- -
0 g == T |

FIGURE 2.3-3
The PDF of the x* random variable for different values of n. All plots are shown for o = 1.
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Some Useful Probability Distributions éf/;:,-‘z; 3

Slap>

o Chi-square (Gamma) distribution with n degrees of
freedom (cont.).

o The first two moments of Y are:

E(Y)=no*®
E(Y?)=2nc" +n°c’
O'j =2noc"
o The CDF of Y Is:
FY(y):J'y L UMl 2qy, Yy >0

O 0'”2”/21“(1 nj
2

42
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Some Useful Probability Distributions éf/:;l?

Slap>

o Chi-square (Gamma) distribution with n degrees of
freedom (cont.).

o The integral in CDF of Y can be easily manipulated into the

form of the incomplete gamma function, which is tabulated
by Pearson (1965).

o When n is even, the integral can be expressed in closed form.
Let m=n/2, where m is an integer, we can obtain:

3

-1
e 1
() =1-e 7 3 L) y=0

k

N
q
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o Non-central chi-square distribution

o If X is Gaussian with mean m, and variance o2, the random
variable Y=X? has the PDF:

1 —(y+m2)/ 202 m,
pY(y):\/HGe(y I COSh(\/Zz )1 yZO

o The characteristic function corresponding to this PDF is:

jm2v/(1-j2vo?)

-V _
WY(J ) (1_ j2V02)1/2
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Some Useful Probability Distributions é{\//‘,{fé

o Non-central chi-square distribution with n degrees of
freedomn

o Y =) X! X, i=12,..,n,arestatistically independent and

Identically distributed (iid) Gaussian random variables with

meanm,, i =1,2,...,n, and identical variance equal to &*.
o The characteristic function is:

[0 \
1 JV;mi2

ex
(1- j2vo?)"? Pl1s j2vo?®

vy (JV) =

45
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Some Useful Probability Distributions éf/;%
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o Non-central chi-square distribution with n degrees of
freedom

o The characteristic function can be inverse Fourier
transformed to yield the PDF:

1 n— —(s*+y)/25? S
pY (y) — 2 2 ( %)( 2)/4e iz In/2—1(\/§_2)’ y >0
O S O

where, s is called the non-centrality parameter:

s?=>m
i=1
and | (x) is the ath-order modified Bessel function of the
first kind, which may be represented by the infinite series:

) i (X/Z)a+2k X>O
~KkIT'(x+k+1) B
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o Non-central chi-square distribution with n degrees of
freedom

o The CDF is:

y 1 (U (n-2)r4 S
FY (y) — J.O 202 (Szj e—(S +u)/ 20 Inlz_l(\/U?)du

o The first two moments of a non-central chi-square-
distributed random variable are:

E(Y)=no’®+5s°
E(Y*)=2nc"+40°s° +(no’ +5°)°

05 = 2nc* +40°s?
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o Non-central chi-square distribution with n degrees of freedom

o When m=n/2 is an integer, the CDF can be expressed In
terms of the generalized Marcum’s Q function:

m-1
Qn (a’ b) - J‘bOo X(ij e_(xz+a2)/2|m—1(ax)dx

a
~Qab)+e T 2], (ab)
where  Q,(a,b)= e‘(az”’z)’zi(gj I (ab), b>a>0

. u L
By using x° =— and let a* = 3%2 , it is easily shown:
O

FY (y) :1_Qm (i’ﬂj

O O
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Some Useful Probability Distributions éf/:;l?

Slap>

o Rayleigh distribution

o Rayleigh distribution is frequently used to model the statistics
of signals transmitted through radio channels such as cellular

radio.
o Consider a carrier signal s at a frequency w, and with an
amplitude a: _
S =a-exp(Jw,t)
o The received signal s, is the sum of n waves:

s, =, expl (ot +6)]=rexplj(t + 0)]

where rexp(j&)=>a exp(j&;)
i1=1

49
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Some Useful Probability Distributions éf/:;l?

Slap>

o Rayleigh distribution
o Define: rexp(jo)= Za cos 6, + JZa sin@ =x+ jy

We have: xEZai cosé and ysZai sin 6,
I= =1

where: r*=x"+y* x=rcos@ y=rsind

o Because (1) nis usually very large, (2) the individual
amplitudes a; are random, and (3) the phases 6; have a
uniform distribution, it can be assumed that (from the
central limit theorem) x and y are both Gaussian variables
with means equal to zero and variance:

2 2 _ 2
Oy =0,=0

50
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Some Useful Probability Distributions éf/;:,-‘z; 3

Slap>

o Rayleigh distribution
o Because x and y are independent random variables, the joint

distribution p(x,y) Is
1 exp| - X°+y°
2710° 20°

p(x,y) = p(x)p(y) =
o The distribution p(r,0) can be written as a function of p(x,y) :
p(r,8) =|3|p(x, y)

_ax/c’ir ax/c’?@_cosé? —rsind
“loylor oylo6) |sin@ rcosd

o(r.6) =2Lexp[— rZZ]

o 20

=r

o1
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Some Useful Probability Distributions éf/:;l?
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o Rayleigh distribution
o Thus, the Rayleigh distribution has a PDF given by:
27 ( r —r?/2c2
—-€ r>0
Pr(r) = j p(r,0)do =4 52
0 0 otherwise

.

o The probability that the envelope of the received signal does
not exceed a specified value R is given by the corresponding
cumulative distribution function (CDF):

r

FR(r):I; e 2 du=1—exp™ **, =0
0
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o Rayleigh distribution _
o Mean: r... =E[R]= J.rp(r)dr 4\/7 1.25330

o Variance: o2 = E[R?]-E?[R] = jr p(r)dr_T”
0

— 02(2 —%j —0.42925°2

- . . 1 Fmedian
o Median value of r is found by solving: = = j p(r)dr
9 0
medlan =1177c

o Monents of R are: E[R"]=(2 GZ)WF(“;)

o Most likely value:=max { px(r) } = o
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o Rayleigh distribution

plx)

o4

f'&

FIGURE 2.3+
The PDF of the Rayleigh random variable
for three different values of o,
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o Rayleigh distribution
o Probability That Received Signal Doesn’t Exceed A Certain

Level (R) E (1) :j o(u)du
= jiexp( u° ]du
0 O

R

=1- exp( >
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o Rayleigh distribution

o Mean value
rean = E[R] = j rp(r)dr

oor2 r2 o0 r2
= | —exp| — dr =|-rdexp| -
e b
O o . r2 0 00 r2
=—T-exp| — + | exp| — dr
{2) [l 2,

=2z 'f\/_gexp( 5 jdr
—\/_O'——O'\/; 1.2533¢
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o Rayleigh distribution:
o Mean square value:

E[R*] :Trzp(r)dr

—Tr—gexp — r’ dr —T—rzdex — r’

002 20° - ¥ 20°

< 00=0 5 2
=°—°r2-exp[— ' j
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o Rayleigh distribution
o Varlance:

o’ =E[R*]-E’[R]

=<202>—(a-\/§>2

= o2 -(2 —%) = 0.42925>
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o Rayleigh distribution

o Most likely value
o Most Likely Value happens when: dp(r) /dr=0

dp(r) 1 r? 2r* r?
= —-exp| — — -eXp| — =0
dr o’ p( 20‘2] 2.0" P 20°

1
e _
Xp( 2) ~ 0.6065

Voot (Y
» 0
g"\j"
g
5

o) o)
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o Rayleigh distribution

o Characteristic function

- © I 12262 jur
l//R(JV): 0 O_ze celdr

_ [ L g’ cos(vr)dr + j|. g — e "2 sin(vr)dr
(7

=1|:1(1,i —EVZGZ - jW/Eﬂ'VGze Vil
2 2 2

IS the confluent hyupergeometric function :

=
D
-
@D
[N
T
N
=
QJ
;/

F.(a; B x) = g i((i;rlz)ﬂrﬁ ))T(k! . B#0,-1-2,.
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o Rayleigh distribution
o Characteristic function (cont.)

Beaulieu (1990) has shown that 1Fl(l, % ;—a) may be

expressed as:
k

1 = a
Fll=-a|=-e"
' 1( 2 aj ° kz(;(Zk—l)k!
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o Rice distribution

o When there Is a dominant stationary (non-fading) signal
component present, such as a line-of-sight (LOS) propagation
path, the small-scale fading envelope distribution is Rice.

scattered waves direct waves
S, = }'exp[ J (a)ot + H)] + Aexpzjmotj
=[(x+ A) + Jylexp(Jaot) = rexp[ J(a,t +0)]
= (X+ A+ VY’
X+ A=rcosé
y=rsing
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o Rice distribution
o By following similar steps described in Rayleigh distribution,

we obtain:
W r’+ A? Ar
—exp| — || — for (A>0,r>0
p(r) =+ o’ p( 20, ]O(ij ( )
0 for (r<0)
where

21
I()(Ag] 21 exp(Arcos@jdg
O T O

r r

IS the modified zeroth- order Bessel function.

0-3
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o Rice distribution

o The Rice distribution is often described in terms of a
parameter K which is defined as the ratio between the
deterministic signal power and the variance of the multi-path.
It is given by K=A?/(252) or in terms of dB:

2

A
K(dB)=10-lo
(dB) 9202

[aB]

o The parameter K Is known as the Rice factor and completely
specifies the Rice distribution.

o As A=>0, K->-o dB, and as the dominant path decreases in
amplitude, the Rice distribution degenerates to a Rayleigh
distribution.

64



Some Useful Probability Distributions { =

o Rice distribution

pir)

Recetved signal envelope r (volts)

65
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o Rice distribution
S, = > a exp| j(at +6) ]+ Aexp(jat)
=1

= {Zn: a, exp(jé )} J(a3t) + Aexp(Jayt)

=r'exp(j@)exp(jo,t) + Aexp(jw,t)
= r'exp| j(wyt + 6) |+ Aexp(jaw,t)
=[(x+ A) + jylexp(jayt) = rexp| j(wyt + )]

where r'exp(j@)=>a exp(j&;)
i1=1
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o Rice distribution n n
o Define: r'exp(j&)=> acosé +j> asing =x+ jy
i1=1 i=1

Wehave: x=) a;cosd, and y=) asing
i1=1 =1

and r*=(x+A)°+y° x+A=rcosé y=rsiné

o Because (1) nis usually very large, (2) the individual
amplitudes a; are random, and (3) the phases 6; have a
uniform distribution, it can be assumed that (from the central
limit theorem) x and y are both Gaussian variables with means

equal to zero and variance:
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o Rice distribution

o Because x and y are independent random variables, the joint
distribution p(x,y) Is

p(X ¥) = POIP(Y) = ! Zexp[— Xty j

o 20°
o The distribution p(r,0) can be written as a function of p(x,y) :

p(r,6) =[3|p(x, y)

cosd —-rsiné
sin@d rcosd

= = =T

oxlor oxloo
oylor oyloo
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o RIice distribution

2 2
p(r,@):LeXp(_ X2 +y ]

2o 2572

= LeXp(_ (rcosg—A)* +(rsin e)zj

2ro N 20°

' ( r2+A2—2Arcosé?]
=——exp| — :
2no . 20

— L exp AT exp Ar cos @
_G 202 27T 02
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o Rice distribution

The Rice distribution has a probability density function (pdf)
given by :

p(r) = [ p(r,0)do

Cr r’+A%\ 1 ¢ Ar cos @
—exp| — ex dé r>0
o’ p( 20° )27[ -([ p( o’ j

0 otherwise

/\

.
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o Nakagami m-distribution

o Frequently used to characterize the statistics of signals
transmitted through multi-path fading channels.

o PDF is given by Nakagami (1960) as:
2 m i 2m-1.-mr2/Q
r)= r¥'-e
pR( ) F(m)(Qj
Q=E(R?)
2

= 2 —, m>>

E[(R? - Q] 2
The parameter m is defined as the ratio of moments, called
the fading figure.

m
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o Nakagami m-distribution _

o The n-th moment of R is: f

n/2 m%

E(R”): F(m+n/2)(Qj .

r(m) (m 3

o By setting m=1, the PDF _ o
reduces to a Rayleigh PDF. '

FIGURE 2.3-6
The PDF for the Nakagami m distribution, shown with £ = 1. m is the fading figure.
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o Lognormal distribution:
° Let X =InR, where X Is normally distributed with mean m

and variance c°.

o The PDF of R Is given by:

1 —(In r—m)2/20-2
e r>0
p(r)=<+2zor (r=0)

0 (r<0)

o The lognormal distribution is suitable for modeling the effect
of shadowing of the signal due to large obstructions, such as
tall buildings, in mobile radio communications.
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o Multivariate Gaussian distribution

o Assume that X;, 1=1,2,...,n, are Gaussian random variables
with means m;, i=1,2,...,n; variances ¢4, i=1,2,...,n; and
covariances py;, 1,J)=1,2,...,n. The joint PDF of the Gaussian
random variables X;, 1=1,2,...,n, Is defined as

2

o M denotes the n x n covariance matrix with elements {y;};

o X denotes the n x 1 column vector of the random variables;

o M, denote the n x 1 column vector of mean values m;, i=1,2,...,n.
o M-t denotes the inverse of M.

o X’ denotes the transpose of x.

1 1 "Nl
p(xl'xz’m’xn):(Zn)”’z(detM)l’z exp{——(x—mx)l\/l (x—mx)}

74



Y

Some Useful Probability Distributions

o Multivariate Gaussian distribution (cont.)

o Given v the n-dimensional vector with elements v,
1=1,2,...,n, the characteristic function corresponding to the n-
dimentional joint PDF is:

w(jv)=E(e")= EXp(jm'Xv—%v'Mvj
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o Bi-variate or two-dimensional Gaussian

o The bivariate Gaussian PDF is given by:
1

PLX, X )=
06 %:) 270,0,+1- p°

< eXp _022 (Xl _m1)2 —2p0,0, (Xl _ml)(XZ _m2)+512 (Xz _m2)2
2nclo, (1—,02)

mm M{Gf “} o = E[(x-m) (%, —-m,)]

m, thy Oy
H;; . -
py=——, i#], Oﬁ‘pij‘ﬁl
0,0
_ oy PO10, 1 _ 1 o, —pPO,0,
M = 2 | M = 2 __2 2 2
PO10, 0, 0,0, (1_,0 ) —PO10, 0,
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o Bi-variate or two-dimensional Gaussian
o p Is a measure of the correlation between X; and X,.

o When p=0, the joint PDF p(x,,X,) factors into the product
pP(X,)p(X,), where p(x;), 1=1,2, are the marginal PDFs.

o When the Gaussian random variables X, and X, are
uncorrelated, they are also statistically independent. This
property does not hold in general for other distributions.

o This property can be extended to n-dimensional Gaussian
random variables: if p;=0 for 1], then the random variables X;
1=1,2,...,n, are uncorrelated and, hence, statistically
Independent.

7



®

Upper Bounds on the Tail Probability éf/;:,-‘?’é

£A

S LAp S

o Chebyshev inequality

o Suppose X Is an arbitrary random variable with finite mean m,
and finite variance ¢,2. For any positive number 9:

2

P(X —m,|>5)<
o Proof:
or = (x=m) p)dx>[  (x=m,)"p(x)dx
> 52 p(X)dx = 52P(| X —m, [> &)

|X—m, |>06

/8
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o Chebyshev inequality

o Another way to view the Chebyshev bound is working with
the zero mean random variable Y=X-m.,.

o Define a function g(Y) as:

. E[g(Y d
g(Y):{l (1Y]= 5) [9(V)]=Ta(y)p(y)ay

0 (IY]<s) =L p(y)dy+[ p(y)dy=P(Y|>0)

2
o Upper-bound g(Y) by the quadratic (Y/5)?, i.e. g(Y)< (—j

The tail probabili Y?\_ElY?)_o, _of
o The tail probability E[g(Y)]SE[?j: gz ):5; =
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o Chebychev inequality
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o A guadratic upper bound on g(Y) used in obtaining the tail

probability (Chebyshev bound)

A

Upper bound
P !. } II
e 'f!) |

g(Y)

0

0

)

o For many practical applications, the Chebyshev bound is

extremely loose.
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o Chernoff bound

o The Chebyshev bound given above involves the area under
the two tails of the PDF. In some applications we are
Interested only in the area under one tail, either in the interval
(8, ) or In the interval (-, J).

o Insuch a case, we can obtain an extremely tight upper bound
by over-bounding the function g(Y) by an exponential having
a parameter that can be optimized to yield as tight an upper
bound as possible.

o Consider the tail probability in the interval (o, «).

1 (Y2
g(Y)<e"™ andg(Y) isdefinedas g(Y)= ) ((Y <?)

where v > 0 Is the parameter to be optimized.
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o Chernoff bound

o A
Upper bound
{Jr:.‘ — d)
g(¥)
] -
— - }
0 0

o The expected value of g(Y) is

Elg(y)]=P(Y 25)<E(e")

o This bound is valid for any v >0.

82
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o Chernoff bound

o The tightest upper bound Is obtained by selecting the value
that minimizes E(e>(-9),

o A necessary condition for a minimum Is:

%E(eV(Y‘5)):O

iE(ev(Y—d)) _ E(iev(v—ﬁ)j _ E|:(Y _5)ev(Y—5):|

dv dv
—e ¥ [E(YevY )-SE (" )] -0
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o Chernoff bound
o LetV be the solution, the upper bound on the one - sided tail
probability is:
P(Y > 5)<e ”E(e")

o An upper bound on the lower tail probability can be obtained
In a similar manner, with the result that

P(Y <5)<e™E[™) &<0
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o Chernoff bound

o Example: Consider the (Laplace) PDF p(y)=eV/2.
r(y)

o The true tail probability is:

P(YY >6)= J':%e‘ydy =%e‘5
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o Chernoff bound
o Example (cont.)

E(ve" )= 2 L

(v+1) (v—1) )- L+v)i—v)

Since E(Ye" )- (" )=0, we obtain v25+2v—5=0

E(eV

/ 2
g=2* 51+§ (V must be positive)
5 s
= P(Y26)<—~ e Ve
vz0) 21441467
o

fors >>1: P(Y>68)<—=e™ (iz for Chebyshev bound}
o)
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Sums of Random Variables and the Central Limit
Theorem

o Sum of random variables

o Suppose that X;, 1=1,2,...,n, are statistically independent and
Identically distributed (iid) random variables, each having a
finite mean m, and a finite variance ¢,°>. Let Y be defined as
the normalized sum, called the sample mean:

1 n
Y_Héxi

o Themeanof Y is
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Sums of Random Variables and the Central Limit //-{_;
Theorem 2§77

o Sum of random variables
o The variance of Y Is:

>
>

02 =E(Y?)-m? =E(Y?)-m?’ :n—lz_ ) 1E(x.xj)—m2
I=L =

1 n 1 n n

=22 E(xf)+F§§ E(X,)E(X,)-m?
1

F[n(af +m; )]+n—12n(n —1)m2 —m? =

-’ ‘XQN

o An estimate of a parameter (in this case the mean m,) that
satisfies the conditions that its expected value converges to
the true value of the parameter and the variance converges to
Zero as n—oo Is said to be a consistent estimate.
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Stochastic Processes

o Many of random phenomena that occur in nature are
functions of time.

o In digital communications, we encounter stochastic
processes in:

o

The characterization and modeling of signals generated by
Information sources;

The characterization of communication channels used to
transmit the information:;

The characterization of noise generated in a receiver;

The design of the optimum receiver for processing the
received random signal.
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o Introduction

o At any given time instant, the value of a stochastic process is
a random variable indexed by the parameter t. We denote
such a process by X(t).

o In general, the parameter t Is continuous, whereas X may be
either continuous or discrete, depending on the
characteristics of the source that generates the stochastic
process.

o The noise voltage generated by a single resistor or a single
Information source represents a single realization of the
stochastic process. It is called a sample function.
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Stochastic Processes

o Introduction (cont.)

o The set of all possible sample functions constitutes an
ensemble of sample functions or, equivalently, the stochastic
process X(t).

o In general, the number of sample functions in the ensemble is
assumed to be extremely large; often it is infinite.

o Having defined a stochastic process X(t) as an ensemble of
sample functions, we may consider the values of the process
at any set of time instants t;>t,>t,>...>t_, where n is any
positive integer.

o In general, the random variables X, = X(t;),i=12,...,n, are
characterized statistically by their joint PDF p(x, , X, ,....X, )
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o Stationary stochastic processes
¢ Consider another set of n random variables X, ., = X (t; +t),

1=1,2,...,n, where t Is an arbitrary time shift. These random

t; +t

variables are characterized by the joint PDF p(X, ., X .11 X, ., )
o The jont PDFs of the random variables X, and X, ,,1 =1,2,...,n,

may or may not be identical. When they are identical, i.e., when
(X, %005, ) = P (X s X o)

for all t and all n, it is said to be stationary in the strict sense.

o When the joint PDFs are different, the stochastic process is
non-stationary.

+t?
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Averages for a stochastic process are called ensemble averages.
The nth moment of the random variable X, is defined as:

E (X y ) - _Eooo X, p(Xti )dxti

In general, the value of the nth moment will depend on the
time instant t; if the PDF of X, dependsont;.
When the process is stationary, p(xti+t)= p(xti )for allt.

Therefore, the PDF is independent of time, and, as a
conseqguence, the nth moment is independent of time.
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Stochastic Processes

o Two random variables: X, = X (t;),i=1,2.
o The correlation Is measured by the joint moment:

o

o

o

o

/////

t,, It Is denoted by ¢(t; t,).

¢(t, t,) Is called the autocorrelation function of
stochastic process.

the

For a stationary stochastic process, the joint moment is:

E(th th):¢(t1’t )=t —1,) = o(7)
¢(—T)=E(Xt1 X, . )=E(X ) E(X X

t+7 t+7

Average power in the process X(t): ¢(0)=E(X{?).

94
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Stochastic Processes

o Wide-sense stationary (WSS)

o A wide-sense stationary process has the property that the
mean value of the process iIs independent of time (a
constant) and where the autocorrelation function satisfies
the condition that ¢(t,,t,)=¢(t,-t,).

o Wide-sense stationarity is a less stringent condition than
strict-sense stationarity.

o If not otherwise specified, any subsequent discussion in
which correlation functions are involved, the less stringent
condition (wide-sense stationarity) is implied.
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o Auto-covariance function

o The auto-covariance function of a stochastic process is
defined as:

u(t,t,)= E{[th -m(t) [ X, —m(tz)]}
=¢(t,.t,)-m(t)m(t,)

o When the process is stationary, the auto-covariance
function simplifies to:

p(t,t,)=p(z)—m? = yu(z) (function of time difference)

o For a Gaussian random process, higher-order moments can
be expressed in terms of first and second moments.
Consequently, a Gaussian random process is completely
characterized by its first two moments.
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Stochastic Processes

o Averages for a Gaussian process

o Suppose that X(t) is a Gaussian random process. At time
Instants t=t;, 1=1,2,...,n, the random variables X, 1=1,2,....n,
are jointly Gaussian with mean values m(t,), i1=1,2,...,n, and
auto-covariances:

y(ti,tj): E[(Xti —m(ti))(Xtj —m(tj ))} i,j=12,..,n

o If we denote the n x n covariance matrix with elements u(t;,t;)
by M and the vector of mean values by m,, the joint PDF of
the random variables X, 1=1,2,...,n, Is given by:

1 1
277)"*(det M M x mx)}
o If the Gaussian process iIs wide-sense stationary, it is also

strict-sense stationary.

4

1
p(X11X2""’Xn):( )1/2 eXpI:_E(X_mx)
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o Averages for joint stochastic processes
o Let X(t) and Y(t) denote two stochastic processes and let
X =X(), 1=1,2,...,n, Yt,jEY(t’j), J=1,2,...,m, represent the
random variables at times t,;>t,>t,>...>t_ and
' >t',>t’;>...>t" , respectively. The two processes are
characterized statistically by their joint PDF:

o The cross-correlation function of X(t) and Y(t), denoted by
Pyy(t1;15), Is defined as the joint moment:

b, (1) =E(X, Y, )= LO LO X, Yo, P(X, . Y, )dx, dy,
o The cross-covariance IS:

Hyy (t,,1,) = ¢xy (t,,t,) —m, (tl)my (t,)
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Stochastic Processes

o Averages for joint stochastic processes
o When the process are jointly and individually stationary, we
have @, (t;,1)=,(t;-1), and p (t,6)= py (t-t):
by (—7) = E(X,Y,,.) =E(X, Y)=E(Y,X . )=4,()

o The stochastic processes X(t) and Y(t) are said to be
statistically independent if and only if :

DX Xty v X o Yoo Yoo Yy ) = PO Xy e X ) P(Y 0 Y v V)

for all choices of t; and t’; and for all positive integers n and m.
o The processes are said to be uncorrelated if

¢Xy(t1’t2):E(Xt1)E(Yt2) = :ny(tﬂtz):O
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o Complex-valued stochastic process
o A complex-valued stochastic process Z(t) is defined as:
Z(t)=X(t)+ JY (1)
where X(t) and Y(t) are stochastic processes.

o The joint PDF of the random variables Z,=Z(t;), 1=1,2,...,n, Is
given by the joint PDF of the components (X, Yy), 1=1,2,...,n.
Thus, the PDF that characterizes Z,, 1=1,2,...,n, Is:

P(X s X, s Xe o Yo Yy veees Y, )

o The autocorrelation function is defined as:

¢, (L,t,) = % E(Ztlth) = % E |:(th T thl )( th - th2 ):| (**)

:%{ ¢xx(t1’t2)+¢yy(tl’t2)+ j[¢yx(tl’t2)_¢xy(t1’t2)] }

100



Stochastic Processes

o Averages for joint stochastic processes:

o When the processes X(t) and Y(t) are jointly and individually
stationary, the autocorrelation function of Z(t) becomes:

¢zz (tl’tz) — ¢zz (tl _tz) — ¢zz (T)
1

> 072(1)= 9"77(-7) because from (~*): ¢, (tt) =5 EZ,Z))

4.() =2 E(Z.Z,.)=E@Z; 2)=ZE@ZZ] )=4.(7)

L+ 4
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o Averages for joint stochastic processes:

o Suppose that Z(t)=X(t)+)Y(t) and W(t)=U(t)+]V(t) are two
complex-valued stochastic processes. The cross-correlation
functions of Z(t) and W(t) is defined as:

1 )
¢zw (tl’ t2) = E E(Ztl .Wtz )

R —

- {4, G0+ 4,6 -4, 60 |

o When X(t), Y(t),U(t) and V(t) are pairwise-stationary, the
cross-correlation function become functions of the time
difference.

- 1 . 1 . 1 .
* $pu(7) = 2 E(Ztl th—f) - 2 E(Ztiﬂwti) - 2 E(\Ntizti+r) =0, (=7)
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Power Density Spectrum

o A signal can be classified as having either a finite (nonzero)
average power (infinite energy) or finite energy.

o The frequency content of a finite energy signal is obtained
as the Fourier transform of the corresponding time
function.

o If the signal Is periodic, its energy is infinite and,
consequently, its Fourier transform does not exist. The
mechanism for dealing with periodic signals is to represent
them in a Fourier series.
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Power Density Spectrum éf/;{;ﬁ

o A stationary stochastic process is an infinite energy
signal, and, hence, its Fourier transform does not exist.

o The spectral characteristic of a stochastic signal is
obtained by computing the Fourier transform of the
autocorrelation function.

o The distribution of power with frequency Is given by
the function: . |
O(f)= j_ d(r)e 1" dr

o The inverse Fourier transform relationship is:

#c)=[ @(f > df
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Power Density Spectrum

#(0)= [ o(f )it =E(x,)20

Since ¢(0) represents the average power of the stochastic signal,
which is the area under ©(f ), ®(f ) is the distribution of power as
a function of frequency.

®( f) 1s called the power density spectrum of the stochastic

Process. (from definition)
If the stochastic process is real, ¢(t) Is real and ep\ger)1 and, hence

®( f) is real and even (easy to prove from definition)

If the stochastic process Is complex, (p(t) (p*( 1) and d(f)Is
real because:

CD*( f ) = _OO ¢*(r)ej2””df = J-_oo ¢*(—r')e_‘-2””'dz"

— ¢(T)e_j2””dr = CD( f )

o —00
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Power Density Spectrum éf/;?%

o Cross-power density spectrum

o For two jointly stationary stochastic processes X(t) and Y(t),
which have a cross-correlation function ¢, (t), the Fourier

f IS: o |
transtorm IS f)Z J‘_ ¢Xy(z_)e—127z1‘rdz_

o @y (T)Is called the cross-power density spectrum.
¢ (Diy(f) Xy( )erndeT J ¢Xy e JZﬂdeT

P00

:__w¢yx(r)e—ﬂﬂffdf o (f)

o If X(t) and Y(t) are real stochastic processes
f ) = J-_i@y (T)ejz””df =0 (—f ) — O, ( f ) =0, (—f )
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Response of a Linear Time-Invariant System to a
Random Input Signal e A

o Consider a linear time-invariant system (filter) that is
characterized by its impulse response h(t) or equivalently, by its
frequency response H( f), where h(t) and H( f ) are a Fourier
transform pair. Let X(t) be the input signal to the system and let
y(t) denote the output signal.

y(t)= J_oo h(z)x(t—z)dr
o Suppose that x(t) is a sample function of a stationary stochastic
process X(t). Since convolution is a linear operation performed

on the input signal x(t), the expected value of the integral is
equal to the integral of the expected value.

m, =E[Y()]=]_ h(r)E[X(t-7)]dr
-m J' r)dz =m.H (0) stationary

o The mean value of the output process Is a constant.
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Response of a Linear Time-Invariant System to a 7= ;
Random Input Signal 2477

o The autocorrelation function of the output is:
1 .
¢yy (tl’tz)ZEE(YtlYtz)
1 oo o . .
- j j h(4)h (a)E[X(tl— B)X(t, —a)dadp
—j I -, +a- ,B)dad,B

o |If the Input process is stationary, the output is also stationary:

j I (r+a—p)dadp
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Response of a Linear Time-Invariant System to a
Random Input Signal

o The power density spectrum of the output process is:
D, (1)=]" g, (r """ ds
— _OO f J_OO h’ (a)h(,B)ngX (T +a —ﬂ)e‘jz”ffdrdadﬂ

2
=@, (T)H(F)
(by making t,=t+a-f)
o The power density spectrum of the output signal is the product of

the power density spectrum of the input multiplied by the
magnitude squared of the frequency response of the system.
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Response of a Linear Time-Invariant System to a 7= ’
Random Input Signal 247>

o When the autocorrelation function ¢,,(t) Is desired, it is usually
easier to determine the power density spectrum ®,,(f ) and then
to compute the inverse transform.

@ 0O

by (7) = | @y (F)e! 7 df

= (" @, (F)[H ()] e df

o/ —00

o The average power in the output signal is:
o0 2
By (0) =] @ (F)[H(F) of
o Since ¢, (0)=E(]Y{*) , we have:

j_O:OCDXX(f)‘H (f )‘2 df >0  valid for any H( f).
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Response of a Linear Time-Invariant Systemtoa . =
Random Input Signal e A

o Suppose we let |[H( f)|°=1 for any arbitrarily small interval f, <f <
f,, and H( f )=0 outside this interval. Then, we have:

f
. o (f)df >0

This is possible if an only if @, ( f)>0 for all f.

o Conclusion: @,,( f)>0 for all f.
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Response of a Linear Time-Invariant System to a

Random Input Signal é)‘//;‘;%;,

o Cross-correlation function between y(t) and x(t)

1 1

"4 (tut,)= 5 E(Y, X, )= Efw h(a)E[X (t, — )X "(t,) e

Function of t,-t,

= et —t, - ala =, (0 -t,)

The stochastic processes X (t)and Y (t)are jointly stationary.

o With t;-t,=t, we have:

Dy (r)= fw h(a), (r —a)da

o In the frequency domain, we have:

O, (f)=@,(F)H(f)
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Discrete-Time Stochastic Signals and Systems é}f;i

Discrete-time stochastic process X(n) consisting of an ensemble
of sample sequences {x(n)} are usually obtained by uniformly
sampling a continuous-time stochastic process.

The mth moment of X(n) is defined as:

el xgplx, ox

The autocorrelation sequence is:

¢(n’k):%E(XnX:):%j_ZJ_Z anljp(xn’ Xk)dxndxk

The auto-covariance sequences Is:

(0. k)= g0~ S E(X, JE(X,)
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Discrete-Time Stochastic Signals and Systems

o For a stationary process, we have ¢(n,k)=p(n-k), p(n,k)=u(n-k),
and

uln=k)=¢(n k)~ jmf

where m,=E(X) Is the mean value.

o A discrete-time stationary process has infinite energy but a
finite average power, which Is given as:

E(IX,[)=#(0)
o The power density spectrum for the discrete-time process is
obtained by computing the Fourier transform of ¢(n).

D(f)= > g(n)e >

N=—oo0
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Discrete-Time Stochastic Signals and Systems é\(f({‘
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o The Inverse transform relationship Is:

2l

(Y2 j2.7n

#(n)= j@@(f e 2

o The power density spectrum @( f) is periodic with a
period f =1. In other words, ®( f+k)=0( 1) for

k=0,+1,+2,....

o The periodic property Is a characteristic of the Fourier
transform of any discrete-time sequence.
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Discrete-Time Stochastic Signals and Systems =(/g7

o Response of a discrete-time, linear time-invariant
system to a stationary stochastic input signal.

o The system is characterized in the time domain by its unit
sample response h(n) and in the frequency domain by the
frequency response H( f).

H(1)= 3 hine

N=—00

o The response of the system to the stationary stochastic input
signal X(n) is given by the convolution sum:

o0

y(n)= > h(k)x(n—k)

k=—c0
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Discrete-Time Stochastic Signals and Systems é\(f({‘
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o Response of a discrete-time, linear time-invariant
system to a stationary stochastic input signal.

o The mean value of the output of the system is:
m, =E[y(n)]= 3 h(k) E[x(n-K)]

=mxz h(k):mXH(O) (P. 107)
k=—00

where H(0) is the zero frequency [direct current (DC)] gain
of the system.
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Discrete-Time Stochastic Signals and Systems

o The autocorrelation sequence for the output process is: ‘
b, (K)=3E[y"(n)y(n+k)]
=32 2 0 ()h(J)E[X (n=i)x(n+k-j)]

=2, 2. W ()h(i)d (k- i+i)

I=—00 j=—0o0

o By taking the Fourier transform of ¢,,(k), we obtain the
corresponding frequency domain relationship:

®, ()=, (F)H() (P. 109)

o @, (f), ®(f), and H(T) are periodic functions of
frequency with period f,=1.
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Cyclostationary Processes éf/;ﬁ

For signals that carry digital information, we encounter
stochastic processes with statistical averages that are periodic.

Consider a stochastic process of the form:

X (t)=3 a,g(t—nT)

N=—o0

where {a.} Is a discrete-time sequence of random variables with
mean m_=E(a,) for all n and autocorrelation sequence
Pa(K)=E(a*,a,.,)/2.

The signal g(t) Is deterministic.

The sequence {a,} represents the digital information sequence
that Is transmitted over the communication channel and 1/T
represents the rate of transmission of the information symbols.
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Cyclostationary Processes éf/;:,-‘?’%

o The mean value is:

E[X(1)]= X E(a,)g(t-nT)

N=—o0

=m, > g(t—nT)
The mean is time-varying and it is periodic with period T.
o The autocorrelation function of X(t) is:

Bo (t+7,1)=2E[ X (t+7)X"(1)]
:%i i E(a:am)g*(t—nT)g(Hr—mT)
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Cyclostationary Processes éf/;:,-‘?’%

We observe that
b (t+7+KT 1 +KT ) =9, (t+7,1)

for k=+1,+2,.... Hence, the autocorrelation function of X(t) is also
periodic with period T.

Such a stochastic process is called cyclostationary or periodically
stationary.

Since the autocorrelation function depends on both the variables t
and t, its frequency domain representation requires the use of a
two-dimensional Fourier transform.

The time-average autocorrelation function over a single period is
defined as: T/2

= jm% (t+7,t)dt
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Cyclostationary Processes éf/;:,-‘?’%

Thus, we eliminate the tie dependence by dealing with the
average autocorrelation function.

The Fourier transform of ¢,,(t) yields the average power density
spectrum of the cyclostationary stochastic process.

This approach allows us to simply characterize cyclostationary
process in the frequency domain in terms of the power spectrum.

The power density spectrum is:

j ¢XX e JZﬂfrdZ_
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