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Chapter 10.1 Introduction
◊ In the context of communications, information theory deals with 

mathematical modeling and analysis of a communication system 
rather than  with physical sources and physical channels.

◊ In particular, it provides answers to two fundamental questions:
◊ Q: What is the irreducible complexity below which a signal cannot 

be compressed? A: Entropy.

◊ Q: What is the ultimate transmission rate for reliable communication 
over a noisy channel? A: Capacity.
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Chapter 10.2 Uncertainty, Information, and Entropy

◊ Suppose a source output is modeled as a discrete random variable, S, 
which takes on symbols from a fixed finite alphabet:

with probabilities

◊ Of course, this set of probabilities must satisfy the condition:

◊ A source having the properties that the symbols emitted by the 
source during successive signaling intervals are statistically 
independent is called a discrete memoryless source.
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Uncertainty
◊ Can we find a measure of how much information is produced by 

such a source?
◊ The idea of information is closely related to that of uncertainty.
◊ Consider the event S = sk, by Eq. (10.2), if the probability pk = 1 

and pi = 0 for all i ≠ k, then there is no information when symbol 
sk is emitted (Because we know what the message from the source 
must be).

◊ On the other hand, if P(sk)→pk < pi ←P(si), i ≠ k then there is 
more surprise and therefore information when sk is emitted.

◊ The amount of information is related to the inverse of the 
probability of occurrence.

Chapter 10.2 Uncertainty, Information, and Entropy
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◊ We define the amount of information gained after observing the 
event S = sk, which occurs with probability pk, as the logarithmic
function:
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1.

Obviously, if we are absolutely certain of the outcome of an event, 
even before it occurs, there is no information gained.

2.

The occurrence of an event S = sk either provides some or no 
information, but never brings about a loss of information.

3.

That is, the less probable an event is, the more information we gain 
when it occurs.

4. I(sk sl) = I(sk) + I(sl) if sk and sl are statistically independent. 

( ) 0  for 1k kI s p= = ( )10.5
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◊ It is the standard practice today to use a logarithm to base 2.
◊ The resulting unit of information is called the bit (binary digit):

◊ When pk = 1/2 , we have I(sk) = 1 bit.

◊ Indeed, I(sk) is a discrete random variable that takes on the values 
I(s0), I(s1), …, I(sK-1) with probabilities p0, p1, …, pK-1 respectively. 
The mean of I(sk) over the source alphabet ϑ is given by:

◊ The H(ϑ) is called the entropy of a discrete memoryless source with 
source alphabet ϑ. It is a measure of the average information content 
per source symbol.
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Some Properties of Entropy
◊ Consider a discrete memoryless source whose mathematical 

model is defined by Eqs. (10.1) and (10.2). The entropy H(ϑ) of 
such a source is bounded as follows:

where K is the number of symbols of the source alphabet ϑ.

◊ Furthermore, we may make two statements:
1. H(ϑ) = 0, if and only if the probability pk = 1 for some k, and 

the remaining probabilities in the set are all zero; this lower 
bound on entropy corresponds to no uncertainty. 

2. H(ϑ) = log2K, if and only if the probability pk = 1/K for all k 
(i.e., all the symbols in the alphabet ϑ are equiprobable); this 
upper bound on entropy corresponds to maximum uncertainty. 

Chapter 10.2 Uncertainty, Information, and Entropy
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Example 10.1
◊ To illustrate the properties of H(ϑ), we consider a binary source  for 

which symbol 0 occurs with probability p0 and symbol 1 with 
probability p1 = 1 ‒ p0. (We assume that the source is memoryless so 
that successive symbols emitted by the source are statistically 
independent.)

◊ The entropy of such a source equals

Chapter 10.2 Uncertainty, Information, and Entropy
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◊ We note that :
1. When p0 = 0, the entropy H(ϑ) = 0; this follows the fact that x log x → 0 as x

→ 0.
2. When p0 = 1, the entropy H(ϑ) = 0.
3. The entropy H(ϑ) attains its maximum value, Hmax = 1 bit, when p1 = p0 = ½, 

that is, symbols 1 and 0 are equally probable.

◊ Then we define the entropy function H(p0):

◊ The H(p0) of Eq. (10.12) is a function of the 
prior probability p0 defined on the interval [0,1].

Chapter 10.2 Uncertainty, Information, and Entropy
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Chapter 10.3 Source-Coding Theorem
◊ An important problem in communications is the efficient 

representation of data generated by a discrete source.
◊ The process by which this representation is accomplished is called 

source encoding. The device that performs the representation is 
called a source encoder.

◊ Our primary interest is in the development of an efficient source 
encoder that satisfies two functional requirements:
1. The codewords produced by the encoder are in binary form. 
2. The source code is uniquely decodable, so that the original 

source sequence can be reconstructed perfectly from the 
encoded binary sequence.
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Chapter 10.3 Source-Coding Theorem

◊ We assume that the source has an alphabet with K different symbols, 
and that kth symbol sk occurs with probability pk, k = 0, 1, …, K － 1. 
Let the binary codeword assigned to symbol sk by the encoder have 
length lk, measured in bits. We define the average codeword 
length,    , of the source encoder as

◊ represents the average number of bits per source symbol used in 
the source encoding process.
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Chapter 10.3 Source-Coding Theorem
◊ Let Lmin denote the minimum possible value of    . We then define the 

coding efficiency of the source encoder as

◊ With   ≧ Lmin, we clearly have η ≦1. The source encoder is said to 
be efficient when approaches unity.

◊ Q: How is the minimum value Lmin determined?
◊ A: The answer is embodied in Shannon’s first theorem: the source-

coding theorem.

L
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Chapter 10.3 Source-Coding Theorem
Shannon First Theorem－The source-coding theorem

Given a discrete memoryless source of entropy H(ϑ), the average 
codeword length    for any distortionless source encoding is bounded 
as

◊ Accordingly, the entropy H(ϑ) represents a fundamental limit on the 
average number of bits per source symbol necessary to represent a 
discrete memoryless source in that it can be made as small as, but no 
smaller than the entropy H(ϑ). Thus with Lmin = H(ϑ), we may 
rewrite the efficiency of a source encoder in terms of the entropy 
H(ϑ) as

L
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Chapter 10.4 Lossless Data Compression

◊ A common characteristic of signals generated by physical source is 
that, in their natural form, they contain a significant amount of 
information that is redundant, the transmission of which is therefore 
wasteful of primary communication resources.

◊ For efficient signal transmission, the redundant information should 
be removed from the signal prior to transmission. This operation is 
ordinary performed on a signal in digital form, in which case we 
refer to it as lossless data compression.

◊ In this section, we discuss some source-coding schemes for data 
compression.
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Chapter 10.4 Lossless Data Compression

Prefix Coding
◊ A prefix code is defined as a code in which  no codeword is the 

prefix of any other codeword.

◊ A prefix code has the important property that it is always uniquely 
decodable.

◊ Prefix codes are instantaneously decodable.

Example in Code II :
1011111000…

↓
s1s3s2s0s0…
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Chapter 10.4 Lossless Data Compression

Huffman Coding
◊ The basic idea behind Huffman coding is to assign to each symbol of 

an alphabet a sequence of bits roughly equal in length to the amount 
of information conveyed by the symbol in question.

◊ The essence of the algorithm used to synthesize the Huffman code is 
to replace the prescribed set of source statistics of a discrete 
memoryless source with a simpler one.

◊ This reduction process is continued in a step-by-step manner until 
we are left with a final set of only two source statistics (symbols), 
for which (0,1) is an optimal code.
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Chapter 10.4 Lossless Data Compression

◊ Specifically, the Huffman encoding algorithm proceeds as follows:
1. The source symbols are listed in order of decreasing probability. The two 

source symbols of lowest probability are assigned a 0 and a 1. This part of 
the step is referred to as a splitting stage.

2. These two source symbols are regarded as being combined into a new 
source symbol with probability equal to the sum of the two original 
probabilities. (The list of source symbols, and therefore source statistics, is 
thereby reduced in size by one.) The probability of the new symbol is 
placed in the list in accordance with its value.

3. The procedure is repeated until we are left with a final list of  source 
statistics (symbols) of only two, for which a 0 and a 1 are assigned.

◊ The code for each (original) source symbol is found by working 
backward and tracing the sequence of 0s and 1s assigned to that 
symbol as well as its successors.
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Chapter 10.4 Lossless Data Compression
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Chapter 10.4 Lossless Data Compression

Example 10.3
◊ According to figure (a) and (b), the average codeword length is 

therefore :

◊ The entropy of the specified discrete memoryless source is 
calculated as follows [see Eq. (10.9)]:

( ) ( ) ( ) ( ) ( )0.4 2 0.2 2 0.2 2 0.1 3 0.1 3
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2.12193

H L      = + +     
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Chapter 10.4 Lossless Data Compression

◊ As a measure of the variability in codeword lengths of a source 
code, we define the variance of the average codeword length    
over the ensemble of source symbols as 

where p0, p1, …, pK－1 are the source statistics, and lk is the length 
of the codeword assigned to source symbol sk.

◊ It is usually found that when a combined symbol is moved as high 
as possible, the resulting Huffman code has a significantly smaller 
variance σ2 than when it is moved as low as possible. On this 
basis, it is reasonable to choose the former Huffman code over the 
latter.
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Chapter 10.4 Lossless Data Compression

Example 10.4
◊ Consider again the same discrete memoryless source in Example 

10.3. This time, however, we move the probability of a combined 
symbol as low as possible.

◊ The average codeword length for the second Huffman code is 
therefore

which is exactly the same as that for the first Huffman code for 
Example 10.3.

( ) ( ) ( ) ( ) ( )0.4 1 0.2 2 0.2 3 0.1 4 0.1 4
2.2

L = + + + +

=
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Chapter 10.4 Lossless Data Compression

◊ However, to use of Eq. (10.23) yields the variance of the first 
Huffman code obtained in Example 10.3 as

◊ On the other hand, for the second Huffman code obtained in this 
example, we have from Eq. (10.23):

◊ This results confirm that the minimum variance Huffman code is 
obtained by moving the probability of a combined symbol as high 
as possible.
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Error Detecting Codes

◊ Cyclic Redundancy Code (CRC Code) – also know as the 
polynomial code.

◊ Polynomial codes are based upon treating bit strings as 
representations of polynomials with coefficients of 0 and 1 only.

◊ For example, 110001 represents a six-term polynomial: x5+x4+x0

◊ When the polynomial code method is employed, the sender and 
receiver must agree upon a generator polynomial, G(x), in advance.

◊ To compute the checksum for some frame with m bits, 
corresponding to the polynomial M(x), the frame must be longer 
than the generator polynomial.
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Error Detecting Codes

◊ The idea is to append a checksum to the end of the frame in such a 
way that the polynomial represented by the checksummed frame is 
divisible by G(x).

◊ When the receiver gets the checksummed frame, it tries dividing it 
by G(x). If there is a remainder, there has been a transmission error.

◊ The algorithm for computing the checksum is as follows:
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Calculation of the polynomial code checksum
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Calculation of the polynomial code checksum
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◊ Examples of CRCs used in practice:

◊ A 16-bit checksum catches all single and double errors, all 
errors with an odd number of bits, all burst errors of length 
16 or less, 99.997% of 17-bit error bursts, and 99.998% of 
18-bit and longer bursts.

Cyclic Redundancy Code (CRC)
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Chapter 10.11 Linear Block Code

◊ Consider then an (n, k) linear block code
◊ k : bits of message sequence. 
◊ n : code bits. 
◊ n-k bits are referred to as parity check bits of the code.

◊ Definition: A block code of length n and 2k code word is 
called a linear (n, k) code iff its 2k code words form a k-
dimensional subspace of the vector space.

◊ In fact, a binary block code is linear iff the module-2 
sum of two code word is also a code word
◊ 0 must be code word.
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Chapter 10.11 Linear Block Code

◊ Generator Matrix
◊ Since an (n, k) linear code C is a k-dimensional subspace of the 

vector space Vn of all the binary n-tuple, it is possible to find k
linearly independent code word, g0 , g1 ,…, gk-1 in C

where ui = 0 or 1 for 0 ≤ i < k.
◊ Let us arrange these k linearly independent code words as the 

rows of a k × n matrix as follows:

where gi = (gi0, gi1,…,gi,n-1)  for 0 ≤ i < k.
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◊ If u = (u0,u1,…,uk-1) is the message to be encoded, the 
corresponding code word can be given as follows:

◊ Note that any k linearly independent code words of an  (n, 
k) linear code can be used to form a generator matrix for 
the code, i.e. generator matrix is not unique.

0

1
0 1 1 0 0 1 1 1 1

1

( , ,..., )k k k
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◊ A desirable property for a linear block code is the 
systematic structure of the code words as shown in Fig. 3.1
◊ where a code word is divided into two parts

◊ The message part consists of k information digits
◊ The redundant checking part consists of n − k parity-check digits

◊ A linear block code with this structure is referred to as a 
linear systematic block code

Fig. 3.1 Systematic format of a code word

Redundant checking part Message part

n - k digits k digits

Chapter 10.11 Linear Block Code
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◊ A linear systematic (n, k) code is completely specified by a 
k × n matrix G of the following form :

where pij = 0 or 1

(3.4)      

1000000|...
|
|
|

0...100|...
0...010|...
0...001|...

.

.

.

1 ,11,10,1

1,22120

1,11110

1,00100

1

2

1

0





























=





























=

−−−−−

−−

−−

−−

− knkkk

kn

kn

kn

k ppp

ppp
ppp
ppp

g

g
g
g

G

P matrix k × k identity matrix
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◊ For any k × n matrix G with k linearly independent rows, there exists 
an (n-k) ×n matrix H with n-k linearly independent rows such that 
any vector in the row space of G is orthogonal to the rows of H and 
any vector that is orthogonal to the rows of H is in the row space of 
G.

◊ An n-tuple v is a code word in the code generated by G if and only if 
v • HT = 0

◊ This matrix H is called a parity-check matrix of the code
◊ The 2n-k linear combinations of the rows of matrix H form an (n, n –

k) linear code Cd

◊ This code is the null space of the (n, k) linear code C generated by 
matrix G

◊ Cd is called the dual code of C

Chapter 10.11 Linear Block Code
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◊ If the generator matrix of an (n,k) linear code is in the 
systematic form of (3.4), the parity-check matrix may take 
the following form : 

[ ]

(3.7)     
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◊ Let hj be the jth row of H

for 0 ≤ i < k and 0 ≤  j < n – k

◊ This implies that G • HT = 0

0=+=⋅ ijijji pphg

Chapter 10.11 Linear Block Code
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Syndrome decoding - I

◊ The generator matrix G is uses in the encoding operation at the 
transmitter. On other hand, the parity-check matrix H is used in the 
decoding operation at the receiver.

◊ Let ,

◊ r denote the 1-by-n received vector that results from sending the 
code vector c over a noisy channel.

◊ e is the error vector or error pattern.

( )10.78= +r c e

( )
( )

 1 if an error has occurred in the th location
 
 0 otherwise

i i
i

i i

r ci
e

r c
≠

=  =
0,1, , 1i n= −

( )0 1 1, , , ne e e −+ =e = r c 

( )10.79
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Syndrome decoding - I

◊ The receiver has to decode the code vector c from the received r.
◊ The algorithm commonly used to perform this decoding operation 

stars  with the computation of a 1-by-(n-k) vector the error-
syndrome vector or simply the syndrome.

◊ Given a 1-by-n received vector r, the syndrome is defined as

◊ s=0 if and only if r is a code word and receiver accepts r as the 
transmitted code word.

◊ s≠0 if and only if r is not a code word and presence of errors has 
been detected.

◊ When the error pattern e is identical to a nonzero code word  (i.e., r 
contain errors but s=r∙HT=0), error patterns of this kind are called 
undetectable error patterns.
◊ There are 2k-1     undetectable error patterns.

( )0 1 1= , , ,T
n ks s s − −=s rH  ( )10.80
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◊ The syndrome has the following important properties.
◊ Property 1 :

◊ The syndrome depends only on the error pattern, and not on the 
transmitted codeword.

Proof : Using Eqs.(10.78) and (10.80) and then Eq.(10.77) to 
obtain

◊ Hence, the parity-check matrix H of a code permits us to 
compute the syndrome s, which depends only upon the error 
pattern e.

( )

( )0 1 1, , ,

T

T T
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s c e H
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◊ Property 2 :
◊ All error patterns that differ by a code word have the same syndrome.

◊ Proof:
◊ For k message bits, there are 2k distinct code vectors denoted 

as ci, i=1, 2, …, 2k. For any error pattern e, we define the 2k

distinct vectors ei as

◊ In any event, multiplying both sides of Eq. (10.82) by matrix 
HT, we get  

which is independent of index i.

,  1, ,2k
i i i= + =e e c 

( )10.82

T T T
i i

T

= +

=

e H eH c H

eH ( )10.83

Syndrome decoding - I
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◊ The set of vectors {ei, i=1, 2, …, 2k} so defined is called a coset of 
the code. In other words, a code set has exactly 2k elements that 
differ at most by a code vector.

◊ Because there are 2n possible received vectors, and a coset has 2k

different  elements, so an (n,k) linear block code has 2n-k possible 
cosets.

◊ From Eq. (10.83), we may state that each coset of the code is 
characterized by a unique syndrome.

◊ Based on Eqs. (10.69), (10.75), and (10.81) we obtain the (n-k) 
elements of the  syndrome s as:

Syndrome decoding - I

T
n k− =  H I P T=s eH

1 0 00 1 10 1 1,1

2 1 01 1 11 1 1,2

1 0, 1 1 1,
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◊ The syndrome digits are linear combinations of the error digits.
◊ The syndrome digits can be used for error detection.
◊ Because the n – k linear equations of  (10.84) do not have a unique 

solution but have 2k solutions.
◊ There are 2k error pattern that result in the same syndrome, and the 

true error pattern e is one of them.
◊ The decoder has to determine the true error vector from a set of 2k

candidates.
◊ Knowledge of the syndrome s reduce the search for the true error 

pattern e from 2n to 2n-k.
◊ In particular, the decoder has the task of making the best selection 

from the coset corresponding to s.

Syndrome decoding - I
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Minimum Distance Consideration

◊ Let code vectors c1 and c2 have the same number of elements.
◊ The Hamming distance between c1 and c2, denoted d (c1,c2), is 

defined as the number of places where they differ.
◊ For example, the Hamming distance between c1=(1001011) and 

c2=(0100011) is 3.
◊ The Hamming weight (or simply weight) of a code vector c, denote 

by w(c), is defined as the number of nonzero elements of c.
◊ For example, the Hamming weight of c=(1001011) is 3.

◊ From the definition of hamming distance and definition of module-2 
addition that the Hamming weight between two n-tuple, c1 and c2, is 
equal to the Hamming weight of the sum of c1 and c2, that is

( ) ( )1 2 1 2,d w= +c c c c
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◊ The minimum distance dmin of a linear block code is defined as the smallest 
Hamming distance between any pair of code vectors in the code.

◊ Given a block code C ,the minimum distance of C, denoted dmin,
is defined as 

◊ If C is a linear block, the sum of two vectors is also a code vector.
◊ From d (c1,c2)=w (c1+c2), the Hamming distance between two code vectors 

in C is equal to the Hamming weight of third code vector in C

( ){ }min 1 2 1 2 1 2min , : , ,d d C= ∈ ≠c c c c c c

( ){ }
( ){ }

min 1 2 1 2 1 2

min

min

min : , ,

min : ,

 is called the minimum weight of the linear code 

d w C

w C

w
w C

= + ∈ ≠

= ∈ ≠

=

c c c c c c

x x x 0

Minimum Distance Consideration
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◊ The minimum distance dmin is related to the parity-check matrix H of the
code.

◊ Let the matrix H be expressed in terms of its columns as follows:

◊ From Eq.(10.77) we get               

The vector c must have 1s in such positions that the correspond rows of                    
HT sum to the zero vector 0.

◊ Because dmin= wmin, the smallest Hamming weight equals the minimum 
distance of the code. Hence, the minimum distance of a linear block code 
is defined by the minimum number of rows of the matrix whose sum is 
equal to the zero vector.
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◊ The minimum distance, dmin, determines the error-correcting 
capability of the code.

◊ If a code vector ci is transmitted and the received vector is r=ci+e ,
we require that the decoder output ĉ=ci, whenever w(e)≤ t.

◊ The best strategy for decoder then is to pick the code vector d(ci,r) 
closest to the received vector r, that is, the one for which  
is smallest.

◊ With such a strategy, the decoder will be able to detect and correct 
all error patterns of w(e)≤ t, we will show that dmin ≥ 2t+1.        

error bits t≤

Minimum Distance Consideration



55

◊ We construct two spheres, each of radius t, around the points that 
represent ci and cj. 

◊ Let these two spheres are disjoint, d(ci,cj) ≥ 2t+1, as depicted in 
Figure 10.23a.
◊ If the code vector ci is transmitted, and d(ci,r) ≤ t, it is clear that the decoder 

will pick ci as it is the code vector closest to the received vector r. 

Figure 10.23

Minimum Distance Consideration
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◊ Let these two spheres are intersect, d(ci,r) ≤ 2t, as depicted in Figure 
10.23b.
◊ If then the code vector     is transmitted, there exists a received vector r,  and 

d(ci,r) ≤ 2t. But now, r is as close to ci as it is to cj, so there is now the 
possibility of the decoder picking the vector  cj, which is wrong.

Figure 10.23

ic

Minimum Distance Consideration
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◊ An (n,k) linear block code has the power to correct all error patterns 
of weight t or less if and only if

◊ By definition, the smallest distance between any pair of code vectors 
is the minimum distance of the code, dmin.

◊ So, an (n,k) linear block code of minimum distance dmin can correct 
up to t errors if, and only if,

( ), 2 1  for all  and i j i jd t≥ +c c c c

( )min
1 1
2

t d ≤ −  
( )10.86
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Syndrome Decoding - II

We are now ready to describe a syndrome-based decoding scheme 
for linear block code.

◊ Let                    denote the 2k code vectors of an (n,k) linear block 
code.

◊ r denote the receiver vector, which may have one of 2n possible 
values.

◊ The receiver has the task of partitioning the 2n possible received 
vector into 2k disjoint subset                         , Di is the ith subset 
correspond to code vector ci for 1≤ i≤ 2k.

◊ For decoding to be correct, r must be in the subset that belongs to ci.

1 2 2
, , , kc c c

1 2 2
, , , kD D D



59

◊ The 2k subsets described herein constitute a standard array of the linear 
block code.

◊ To construct it, we may exploit the linear structure of the code by 
proceeding as follows:

1. The 2k code vectors are placed in a row with the all-zero code vector 
c1 as the left-most element.

2. An error pattern e2 is picked and placed under c1, and a second row is   
formed by adding e2 to each of the remaining code vectors in the first 
row; it is important that the error pattern chosen as the first element in 
a row not have previously appeared in the stand array. (Note that 
e1=0).

3. Step 2 is repeated until all the possible error pattern have been 
accounted for.

Syndrome Decoding - II
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◊ Figure 10.24 illustrates the structure of the stand array.

◊ The 2n-k rows of the array represent the cosets of the code, and their 
first elements                   are called coset leaders. 2 2

, , n k−e e

( )Figure 10.24 Stand array for an ,  block coden k

Syndrome Decoding - II
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◊ For a given channel, the probability of decoding error is minimized 
when the most likely error are chosen as the coset leader. 

◊ In the case of a binary symmetric channel, the smaller the Hamming 
weight of an error pattern the more likely it is to occur.
The standard array should be constructed with each coset leader 
having the minimum Hamming weight in its coset.

◊ Syndrome Decoding
1. For the received vector r, compute the syndrome s=rHT.
2. Within the coset characterized by the syndrome s, identify the coset leader 

(i.e., the error pattern with the largest probability of  occurrence); call it e0.
3. Compute the code vector

as the decoded version of the received vector r.

Syndrome Decoding - II

0= +c r e ( )10.87
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Structure of Convolutional Encoder

1 2 k 1 2 k 1 2 k

1 2 K

+ + ++

k bits

1 2 n-1 n

Output
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Convoltuional Code

◊ Convolutional codes
◊ k = number of bits shifted into the encoder at one time

◊ k=1 is usually used!!

◊ n = number of encoder output bits corresponding to the k
information bits

◊ r = k/n = code rate
◊ K = constraint length, encoder memory

◊ Each encoded bit is a function of the present input bits and 
their past ones.



65

Generator Sequence

◊

◊

.1  and  ,1  ,0  ,1 )1(
3

)1(
2

)1(
1

)1(
0 ==== gggg

Generator Sequence:  g(1)=(1 0 1 1)

r0 r2r1
u v

r0 r2r1
u vr3

.1  and  0,  ,1  ,1  ,1 )2(
4

)2(
3

)2(
2

)2(
1

)2(
0 ===== ggggg

Generator Sequence:  g(2)=(1 1 1 0 1)
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Convolutional Codes
An Example – (rate=1/2 with K=2)

00 000

Present Next Output

00

1 00 10 11

010

1

0

1

0

1

01

00

10

10 01

10 11

11

11

01

11

11

00

01

10

10

01

x1 x2

G1(x)=1+x2

G2(x)=1+x1+x2

00

01 10

11

1(11)

0(01)

1(00)

1(01)

0(00)

0(11)

0(10) 1(10)

State Diagram
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Trellis Diagram Representation

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Trellis termination: K tail bits with value 0 are usually added to the end of the code.
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Encoding Process

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Input:      1                    0                    1                     1                     1                      0   0
Output:  11                   01                  00                   10                   01                    10         11
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Viterbi Decoding Algorithm

◊ Maximum Likelihood (ML) decoding rule

◊ Viterbi Decoding Algorithm
◊ An efficient search algorithm

◊ Performing ML decoding rule.
◊ Reducing the computational complexity.

received sequence r
ML detected sequence d

min(d,r) !!
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Viterbi Decoding Algorithm

◊ Basic concept
◊ Generate the code trellis at the decoder
◊ The decoder penetrates through the code trellis level by level in 

search for the transmitted code sequence
◊ At each level of the trellis, the decoder computes and compares 

the metrics of all the partial paths entering a node
◊ The decoder stores the partial path with the larger metric and 

eliminates all the other partial paths. The stored partial path is 
called the survivor.
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Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Output:  11                   01                  00                   10                   01                    10         11
Receive: 11                   11                  00                   10                   01                     11 11

2

0
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Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Output:  11                   01                  00                   10                   01                    10         11
Receive: 11                   11                  00                   10                   01                     11 11

2

0

4

2

1

1
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Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Output:  11                   01                  00                   10                   01                    10         11
Receive: 11                   11                  00                   10                   01                     11 11

2

0

4

2

1

1

3

2

1

2
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Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Output:  11                   01                  00                   10                   01                    10         11
Receive: 11                   11                  00                   10                   01                     11 11

2

0

4

2

1

1

3

2

1

2

3

2

3

1
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Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Output:  11                   01                  00                   10                   01                    10         11
Receive: 11                   11                  00                   10                   01                     11 11

2

0

4

2

1

1

3

2

1

2

3

2

3

1

3

3

3

1
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Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Output:  11                   01                  00                   10                   01                    10         11
Receive: 11                   11                  00                   10                   01                     11 11

2

0

4

2

1

1

3

2

1

2

3

2

3

1

3

3

3

1

3

2
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Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Output:  11                   01                  00                   10                   01                    10         11
Receive: 11                   11                  00                   10                   01                     11 11

2

0

4

2

1

1

3

2

1

2

3

2

3

1

3

3

3

1

3

2

2
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Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Decision:11                   01                  00                   10                   01                    10         11
Receive: 11                   11                  00                   10                   01                     11 11

2

0

4

2

1

1

3

2

1

2

3

2

3

1

3

3

3

1

3

2

2

Output: 10111(00)
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