
Wireless Information Transmission System Lab.
Institute of Communications Engineering
National Sun Yat-sen University

Chapter 10
Information and Forward Error Correction

2

Outline
◊ Introduction

◊ Uncertainty, Information, and Entropy

◊ Source-Coding Theorem

◊ Lossless Data Compression

◊ Error Detecting Code (Cyclic Redundancy Code)

◊ Linear Block Code

◊ Convolutional Code

Wireless Information Transmission System Lab.
Institute of Communications Engineering
National Sun Yat-sen University

Chapter 10.1
Introduction

4

Chapter 10.1 Introduction
◊ In the context of communications, information theory deals with

mathematical modeling and analysis of a communication system
rather than with physical sources and physical channels.

◊ In particular, it provides answers to two fundamental questions:
◊ Q: What is the irreducible complexity below which a signal cannot

be compressed? A: Entropy.

◊ Q: What is the ultimate transmission rate for reliable communication
over a noisy channel? A: Capacity.

Wireless Information Transmission System Lab.
Institute of Communications Engineering
National Sun Yat-sen University

Chapter 10.2
Uncertainty, Information, and

Entropy

6

Chapter 10.2 Uncertainty, Information, and Entropy

◊ Suppose a source output is modeled as a discrete random variable, S,
which takes on symbols from a fixed finite alphabet:

with probabilities

◊ Of course, this set of probabilities must satisfy the condition:

◊ A source having the properties that the symbols emitted by the
source during successive signaling intervals are statistically
independent is called a discrete memoryless source.

{ }0 1 1, , , Ks s sϑ −= ()10.1

() , 0,1, , 1k kP S s p k K= = = − ()10.2

1

0
1

K

k
k

p
−

=

=∑ ()10.3

7

Uncertainty
◊ Can we find a measure of how much information is produced by

such a source?
◊ The idea of information is closely related to that of uncertainty.
◊ Consider the event S = sk, by Eq. (10.2), if the probability pk = 1

and pi = 0 for all i ≠ k, then there is no information when symbol
sk is emitted (Because we know what the message from the source
must be).

◊ On the other hand, if P(sk)→pk < pi ←P(si), i ≠ k then there is
more surprise and therefore information when sk is emitted.

◊ The amount of information is related to the inverse of the
probability of occurrence.

Chapter 10.2 Uncertainty, Information, and Entropy

8

◊ We define the amount of information gained after observing the
event S = sk, which occurs with probability pk, as the logarithmic
function:

() 1logk
k

I s
p

=

()10.4

Chapter 10.2 Uncertainty, Information, and Entropy

9

1.

Obviously, if we are absolutely certain of the outcome of an event,
even before it occurs, there is no information gained.

2.

The occurrence of an event S = sk either provides some or no
information, but never brings about a loss of information.

3.

That is, the less probable an event is, the more information we gain
when it occurs.

4. I(sk sl) = I(sk) + I(sl) if sk and sl are statistically independent.

() 0 for 1k kI s p= = ()10.5

() 0 for 0 1k kI s p≥ ≤ ≤ ()10.6

() () for k i k iI s I s p p> < ()10.7

Chapter 10.2 Uncertainty, Information, and Entropy

10

◊ It is the standard practice today to use a logarithm to base 2.
◊ The resulting unit of information is called the bit (binary digit):

◊ When pk = 1/2 , we have I(sk) = 1 bit.

◊ Indeed, I(sk) is a discrete random variable that takes on the values
I(s0), I(s1), …, I(sK-1) with probabilities p0, p1, …, pK-1 respectively.
The mean of I(sk) over the source alphabet ϑ is given by:

◊ The H(ϑ) is called the entropy of a discrete memoryless source with
source alphabet ϑ. It is a measure of the average information content
per source symbol.

() 2 2
1log log for 0,1, , 1k k

k

I s p k K
p

= = − = −

 ()10.8

Chapter 10.2 Uncertainty, Information, and Entropy

() () ()
1 1

2
0 0

1log
K K

k k k k
k k k

H I s p I s p
p

ϑ
− −

= =

 = = =

∑ ∑E ()10.9

11

Some Properties of Entropy
◊ Consider a discrete memoryless source whose mathematical

model is defined by Eqs. (10.1) and (10.2). The entropy H(ϑ) of
such a source is bounded as follows:

where K is the number of symbols of the source alphabet ϑ.

◊ Furthermore, we may make two statements:
1. H(ϑ) = 0, if and only if the probability pk = 1 for some k, and

the remaining probabilities in the set are all zero; this lower
bound on entropy corresponds to no uncertainty.

2. H(ϑ) = log2K, if and only if the probability pk = 1/K for all k
(i.e., all the symbols in the alphabet ϑ are equiprobable); this
upper bound on entropy corresponds to maximum uncertainty.

Chapter 10.2 Uncertainty, Information, and Entropy

() 20 logH Kϑ≤ ≤ ()10.10

12

Example 10.1
◊ To illustrate the properties of H(ϑ), we consider a binary source for

which symbol 0 occurs with probability p0 and symbol 1 with
probability p1 = 1 ‒ p0. (We assume that the source is memoryless so
that successive symbols emitted by the source are statistically
independent.)

◊ The entropy of such a source equals

Chapter 10.2 Uncertainty, Information, and Entropy

()
() ()

0 2 0 1 2 1

0 2 0 0 2 0

log log

log 1 log 1 bits

H p p p p

p p p p

ϑ = − −

= − − − −
()10.11

13

◊ We note that :
1. When p0 = 0, the entropy H(ϑ) = 0; this follows the fact that x log x → 0 as x

→ 0.
2. When p0 = 1, the entropy H(ϑ) = 0.
3. The entropy H(ϑ) attains its maximum value, Hmax = 1 bit, when p1 = p0 = ½,

that is, symbols 1 and 0 are equally probable.

◊ Then we define the entropy function H(p0):

◊ The H(p0) of Eq. (10.12) is a function of the
prior probability p0 defined on the interval [0,1].

Chapter 10.2 Uncertainty, Information, and Entropy

() () ()0 0 2 0 0 2 0log 1 log 1p p p p p= − − − −H ()10.12

Wireless Information Transmission System Lab.
Institute of Communications Engineering
National Sun Yat-sen University

Chapter 10.3
Source-Coding Theorem

15

Chapter 10.3 Source-Coding Theorem
◊ An important problem in communications is the efficient

representation of data generated by a discrete source.
◊ The process by which this representation is accomplished is called

source encoding. The device that performs the representation is
called a source encoder.

◊ Our primary interest is in the development of an efficient source
encoder that satisfies two functional requirements:
1. The codewords produced by the encoder are in binary form.
2. The source code is uniquely decodable, so that the original

source sequence can be reconstructed perfectly from the
encoded binary sequence.

16

Chapter 10.3 Source-Coding Theorem

◊ We assume that the source has an alphabet with K different symbols,
and that kth symbol sk occurs with probability pk, k = 0, 1, …, K － 1.
Let the binary codeword assigned to symbol sk by the encoder have
length lk, measured in bits. We define the average codeword
length, , of the source encoder as

◊ represents the average number of bits per source symbol used in
the source encoding process.

L
1

0

K

k k
k

L p l
−

=

=∑ ()10.14

L

17

Chapter 10.3 Source-Coding Theorem
◊ Let Lmin denote the minimum possible value of . We then define the

coding efficiency of the source encoder as

◊ With ≧ Lmin, we clearly have η ≦1. The source encoder is said to
be efficient when approaches unity.

◊ Q: How is the minimum value Lmin determined?
◊ A: The answer is embodied in Shannon’s first theorem: the source-

coding theorem.

L

minL
L

η = ()10.15

L

18

Chapter 10.3 Source-Coding Theorem
Shannon First Theorem－The source-coding theorem

Given a discrete memoryless source of entropy H(ϑ), the average
codeword length for any distortionless source encoding is bounded
as

◊ Accordingly, the entropy H(ϑ) represents a fundamental limit on the
average number of bits per source symbol necessary to represent a
discrete memoryless source in that it can be made as small as, but no
smaller than the entropy H(ϑ). Thus with Lmin = H(ϑ), we may
rewrite the efficiency of a source encoder in terms of the entropy
H(ϑ) as

L

()L H ϑ≥ ()10.16

()H
L
ϑ

η = ()10.17

Wireless Information Transmission System Lab.
Institute of Communications Engineering
National Sun Yat-sen University

Chapter 10.4
Lossless Data Compression

20

Chapter 10.4 Lossless Data Compression

◊ A common characteristic of signals generated by physical source is
that, in their natural form, they contain a significant amount of
information that is redundant, the transmission of which is therefore
wasteful of primary communication resources.

◊ For efficient signal transmission, the redundant information should
be removed from the signal prior to transmission. This operation is
ordinary performed on a signal in digital form, in which case we
refer to it as lossless data compression.

◊ In this section, we discuss some source-coding schemes for data
compression.

21

Chapter 10.4 Lossless Data Compression

Prefix Coding
◊ A prefix code is defined as a code in which no codeword is the

prefix of any other codeword.

◊ A prefix code has the important property that it is always uniquely
decodable.

◊ Prefix codes are instantaneously decodable.

Example in Code II :
1011111000…

↓
s1s3s2s0s0…

22

Chapter 10.4 Lossless Data Compression

Huffman Coding
◊ The basic idea behind Huffman coding is to assign to each symbol of

an alphabet a sequence of bits roughly equal in length to the amount
of information conveyed by the symbol in question.

◊ The essence of the algorithm used to synthesize the Huffman code is
to replace the prescribed set of source statistics of a discrete
memoryless source with a simpler one.

◊ This reduction process is continued in a step-by-step manner until
we are left with a final set of only two source statistics (symbols),
for which (0,1) is an optimal code.

23

Chapter 10.4 Lossless Data Compression

◊ Specifically, the Huffman encoding algorithm proceeds as follows:
1. The source symbols are listed in order of decreasing probability. The two

source symbols of lowest probability are assigned a 0 and a 1. This part of
the step is referred to as a splitting stage.

2. These two source symbols are regarded as being combined into a new
source symbol with probability equal to the sum of the two original
probabilities. (The list of source symbols, and therefore source statistics, is
thereby reduced in size by one.) The probability of the new symbol is
placed in the list in accordance with its value.

3. The procedure is repeated until we are left with a final list of source
statistics (symbols) of only two, for which a 0 and a 1 are assigned.

◊ The code for each (original) source symbol is found by working
backward and tracing the sequence of 0s and 1s assigned to that
symbol as well as its successors.

24

Chapter 10.4 Lossless Data Compression

25

Chapter 10.4 Lossless Data Compression

Example 10.3
◊ According to figure (a) and (b), the average codeword length is

therefore :

◊ The entropy of the specified discrete memoryless source is
calculated as follows [see Eq. (10.9)]:

() () () () ()0.4 2 0.2 2 0.2 2 0.1 3 0.1 3
2.2

L = + + + +

=

() 2 2 2

2 2

1 1 10.4log 0.2log 0.2log
0.4 0.2 0.2
1 10.1log 0.1log

0.1 0.1
0.52877 0.46439 0.46439 0.33219 0.33219
2.12193

H L = + +

 + +

= + + + +
=

26

Chapter 10.4 Lossless Data Compression

◊ As a measure of the variability in codeword lengths of a source
code, we define the variance of the average codeword length
over the ensemble of source symbols as

where p0, p1, …, pK－1 are the source statistics, and lk is the length
of the codeword assigned to source symbol sk.

◊ It is usually found that when a combined symbol is moved as high
as possible, the resulting Huffman code has a significantly smaller
variance σ2 than when it is moved as low as possible. On this
basis, it is reasonable to choose the former Huffman code over the
latter.

L

()
1 22

0

K

k k
k

p l Lσ
−

=

= −∑ ()10.23

27

Chapter 10.4 Lossless Data Compression

28

Chapter 10.4 Lossless Data Compression

Example 10.4
◊ Consider again the same discrete memoryless source in Example

10.3. This time, however, we move the probability of a combined
symbol as low as possible.

◊ The average codeword length for the second Huffman code is
therefore

which is exactly the same as that for the first Huffman code for
Example 10.3.

() () () () ()0.4 1 0.2 2 0.2 3 0.1 4 0.1 4
2.2

L = + + + +

=

29

Chapter 10.4 Lossless Data Compression

◊ However, to use of Eq. (10.23) yields the variance of the first
Huffman code obtained in Example 10.3 as

◊ On the other hand, for the second Huffman code obtained in this
example, we have from Eq. (10.23):

◊ This results confirm that the minimum variance Huffman code is
obtained by moving the probability of a combined symbol as high
as possible.

() () ()
() ()

2 2 22
1

2 2

0.4 2 2.2 0.2 2 2.2 0.2 2 2.2

0.1 3 2.2 0.1 3 2.2 0.16

σ = − + − + −

+ − + − =

() () ()
() ()

2 2 22
2

2 2

0.4 1 2.2 0.2 2 2.2 0.2 3 2.2

0.1 4 2.2 0.1 4 2.2 1.36

σ = − + − + −

+ − + − =

Wireless Information Transmission System Lab.
Institute of Communications Engineering
National Sun Yat-sen University

Error Detecting Code
(Cyclic Redundancy Code)

31

Error Detecting Codes

◊ Cyclic Redundancy Code (CRC Code) – also know as the
polynomial code.

◊ Polynomial codes are based upon treating bit strings as
representations of polynomials with coefficients of 0 and 1 only.

◊ For example, 110001 represents a six-term polynomial: x5+x4+x0

◊ When the polynomial code method is employed, the sender and
receiver must agree upon a generator polynomial, G(x), in advance.

◊ To compute the checksum for some frame with m bits,
corresponding to the polynomial M(x), the frame must be longer
than the generator polynomial.

32

Error Detecting Codes

◊ The idea is to append a checksum to the end of the frame in such a
way that the polynomial represented by the checksummed frame is
divisible by G(x).

◊ When the receiver gets the checksummed frame, it tries dividing it
by G(x). If there is a remainder, there has been a transmission error.

◊ The algorithm for computing the checksum is as follows:

33

Calculation of the polynomial code checksum

34

Calculation of the polynomial code checksum

35

◊ Examples of CRCs used in practice:

◊ A 16-bit checksum catches all single and double errors, all
errors with an odd number of bits, all burst errors of length
16 or less, 99.997% of 17-bit error bursts, and 99.998% of
18-bit and longer bursts.

Cyclic Redundancy Code (CRC)

Wireless Information Transmission System Lab.
Institute of Communications Engineering
National Sun Yat-sen University

Linear Block Code

37

Chapter 10.11 Linear Block Code

◊ Consider then an (n, k) linear block code
◊ k : bits of message sequence.
◊ n : code bits.
◊ n-k bits are referred to as parity check bits of the code.

◊ Definition: A block code of length n and 2k code word is
called a linear (n, k) code iff its 2k code words form a k-
dimensional subspace of the vector space.

◊ In fact, a binary block code is linear iff the module-2
sum of two code word is also a code word
◊ 0 must be code word.

38

Chapter 10.11 Linear Block Code

◊ Generator Matrix
◊ Since an (n, k) linear code C is a k-dimensional subspace of the

vector space Vn of all the binary n-tuple, it is possible to find k
linearly independent code word, g0 , g1 ,…, gk-1 in C

where ui = 0 or 1 for 0 ≤ i < k.
◊ Let us arrange these k linearly independent code words as the

rows of a k × n matrix as follows:

where gi = (gi0, gi1,…,gi,n-1) for 0 ≤ i < k.

0 0 1 1 1 1k ku u u − −= + + ⋅⋅⋅ +v g g g

00 01 0, 10

10 11 1, 11

1,0 1,1 1, 11

n

n

k k k nk

g g g
g g g

g g g

−

−

− − − −−

 = =

g
g

G

g

39

◊ If u = (u0,u1,…,uk-1) is the message to be encoded, the
corresponding code word can be given as follows:

◊ Note that any k linearly independent code words of an (n,
k) linear code can be used to form a generator matrix for
the code, i.e. generator matrix is not unique.

0

1
0 1 1 0 0 1 1 1 1

1

(, ,...,)k k k

k

u u u u u u− − −

−

 = ⋅ = ⋅ = + + ⋅⋅⋅ +

g
g

v u G g g g

g

Chapter 10.11 Linear Block Code

40

◊ A desirable property for a linear block code is the
systematic structure of the code words as shown in Fig. 3.1
◊ where a code word is divided into two parts

◊ The message part consists of k information digits
◊ The redundant checking part consists of n − k parity-check digits

◊ A linear block code with this structure is referred to as a
linear systematic block code

Fig. 3.1 Systematic format of a code word

Redundant checking part Message part

n - k digits k digits

Chapter 10.11 Linear Block Code

41

◊ A linear systematic (n, k) code is completely specified by a
k × n matrix G of the following form :

where pij = 0 or 1

(3.4)

1000000|...
|
|
|

0...100|...
0...010|...
0...001|...

.

.

.

1 ,11,10,1

1,22120

1,11110

1,00100

1

2

1

0

=

=

−−−−−

−−

−−

−−

− knkkk

kn

kn

kn

k ppp

ppp
ppp
ppp

g

g
g
g

G

P matrix k × k identity matrix

Chapter 10.11 Linear Block Code

42

◊ For any k × n matrix G with k linearly independent rows, there exists
an (n-k) ×n matrix H with n-k linearly independent rows such that
any vector in the row space of G is orthogonal to the rows of H and
any vector that is orthogonal to the rows of H is in the row space of
G.

◊ An n-tuple v is a code word in the code generated by G if and only if
v • HT = 0

◊ This matrix H is called a parity-check matrix of the code
◊ The 2n-k linear combinations of the rows of matrix H form an (n, n –

k) linear code Cd

◊ This code is the null space of the (n, k) linear code C generated by
matrix G

◊ Cd is called the dual code of C

Chapter 10.11 Linear Block Code

43

◊ If the generator matrix of an (n,k) linear code is in the
systematic form of (3.4), the parity-check matrix may take
the following form :

[]

(3.7)

1000

0100
0010
0001

111110

211202

111101

011000

=

= −

,n-k-k-,n-k-,n-k-

,k-

,k-

,k-

T
kn

p...pp...
.
.
.

p...pp...
p...pp...
p...pp...

PIH

Chapter 10.11 Linear Block Code

44

◊ Let hj be the jth row of H

for 0 ≤ i < k and 0 ≤ j < n – k

◊ This implies that G • HT = 0

0=+=⋅ ijijji pphg

Chapter 10.11 Linear Block Code

45

Syndrome decoding - I

◊ The generator matrix G is uses in the encoding operation at the
transmitter. On other hand, the parity-check matrix H is used in the
decoding operation at the receiver.

◊ Let ,

◊ r denote the 1-by-n received vector that results from sending the
code vector c over a noisy channel.

◊ e is the error vector or error pattern.

()10.78= +r c e

()
()

 1 if an error has occurred in the th location

 0 otherwise

i i
i

i i

r ci
e

r c
≠

= =
0,1, , 1i n= −

()0 1 1, , , ne e e −+ =e = r c

()10.79

46

Syndrome decoding - I

◊ The receiver has to decode the code vector c from the received r.
◊ The algorithm commonly used to perform this decoding operation

stars with the computation of a 1-by-(n-k) vector the error-
syndrome vector or simply the syndrome.

◊ Given a 1-by-n received vector r, the syndrome is defined as

◊ s=0 if and only if r is a code word and receiver accepts r as the
transmitted code word.

◊ s≠0 if and only if r is not a code word and presence of errors has
been detected.

◊ When the error pattern e is identical to a nonzero code word (i.e., r
contain errors but s=r∙HT=0), error patterns of this kind are called
undetectable error patterns.
◊ There are 2k-1 undetectable error patterns.

()0 1 1= , , ,T
n ks s s − −=s rH ()10.80

47

◊ The syndrome has the following important properties.
◊ Property 1 :

◊ The syndrome depends only on the error pattern, and not on the
transmitted codeword.

Proof : Using Eqs.(10.78) and (10.80) and then Eq.(10.77) to
obtain

◊ Hence, the parity-check matrix H of a code permits us to
compute the syndrome s, which depends only upon the error
pattern e.

()

()0 1 1, , ,

T

T T

T

n ks s s − −

= +

= +

=

=

s c e H

cH eH
eH

()10.81

T =cH 0

Syndrome decoding - I

48

◊ Property 2 :
◊ All error patterns that differ by a code word have the same syndrome.

◊ Proof:
◊ For k message bits, there are 2k distinct code vectors denoted

as ci, i=1, 2, …, 2k. For any error pattern e, we define the 2k

distinct vectors ei as

◊ In any event, multiplying both sides of Eq. (10.82) by matrix
HT, we get

which is independent of index i.

, 1, ,2k
i i i= + =e e c

()10.82

T T T
i i

T

= +

=

e H eH c H

eH ()10.83

Syndrome decoding - I

49

◊ The set of vectors {ei, i=1, 2, …, 2k} so defined is called a coset of
the code. In other words, a code set has exactly 2k elements that
differ at most by a code vector.

◊ Because there are 2n possible received vectors, and a coset has 2k

different elements, so an (n,k) linear block code has 2n-k possible
cosets.

◊ From Eq. (10.83), we may state that each coset of the code is
characterized by a unique syndrome.

◊ Based on Eqs. (10.69), (10.75), and (10.81) we obtain the (n-k)
elements of the syndrome s as:

Syndrome decoding - I

T
n k− = H I P T=s eH

1 0 00 1 10 1 1,1

2 1 01 1 11 1 1,2

1 0, 1 1 1,

n k n k n k

n k n k n k

n k n k n k n k n k n k

s e e p e p e p
s e e p e p e p

s e e p e p

− − + − −

− − + − −

− − − − − + − − −

= + + + +

= + + + +

= + +

()10.84

50

◊ The syndrome digits are linear combinations of the error digits.
◊ The syndrome digits can be used for error detection.
◊ Because the n – k linear equations of (10.84) do not have a unique

solution but have 2k solutions.
◊ There are 2k error pattern that result in the same syndrome, and the

true error pattern e is one of them.
◊ The decoder has to determine the true error vector from a set of 2k

candidates.
◊ Knowledge of the syndrome s reduce the search for the true error

pattern e from 2n to 2n-k.
◊ In particular, the decoder has the task of making the best selection

from the coset corresponding to s.

Syndrome decoding - I

51

Minimum Distance Consideration

◊ Let code vectors c1 and c2 have the same number of elements.
◊ The Hamming distance between c1 and c2, denoted d (c1,c2), is

defined as the number of places where they differ.
◊ For example, the Hamming distance between c1=(1001011) and

c2=(0100011) is 3.
◊ The Hamming weight (or simply weight) of a code vector c, denote

by w(c), is defined as the number of nonzero elements of c.
◊ For example, the Hamming weight of c=(1001011) is 3.

◊ From the definition of hamming distance and definition of module-2
addition that the Hamming weight between two n-tuple, c1 and c2, is
equal to the Hamming weight of the sum of c1 and c2, that is

() ()1 2 1 2,d w= +c c c c

52

◊ The minimum distance dmin of a linear block code is defined as the smallest
Hamming distance between any pair of code vectors in the code.

◊ Given a block code C ,the minimum distance of C, denoted dmin,
is defined as

◊ If C is a linear block, the sum of two vectors is also a code vector.
◊ From d (c1,c2)=w (c1+c2), the Hamming distance between two code vectors

in C is equal to the Hamming weight of third code vector in C

(){ }min 1 2 1 2 1 2min , : , ,d d C= ∈ ≠c c c c c c

(){ }
(){ }

min 1 2 1 2 1 2

min

min

min : , ,

min : ,

 is called the minimum weight of the linear code

d w C

w C

w
w C

= + ∈ ≠

= ∈ ≠

=

c c c c c c

x x x 0

Minimum Distance Consideration

53

◊ The minimum distance dmin is related to the parity-check matrix H of the
code.

◊ Let the matrix H be expressed in terms of its columns as follows:

◊ From Eq.(10.77) we get

The vector c must have 1s in such positions that the correspond rows of
HT sum to the zero vector 0.

◊ Because dmin= wmin, the smallest Hamming weight equals the minimum
distance of the code. Hence, the minimum distance of a linear block code
is defined by the minimum number of rows of the matrix whose sum is
equal to the zero vector.

[]1 2, , , n=H h h h ()10.85

TH

[]
1

2
1 2 1 1 2 2 0

T

T
T T T T

n n n

T
n

h
h

c c c c h c h c h

h

 = = + + + =

cH

Minimum Distance Consideration

54

◊ The minimum distance, dmin, determines the error-correcting
capability of the code.

◊ If a code vector ci is transmitted and the received vector is r=ci+e ,
we require that the decoder output ĉ=ci, whenever w(e)≤ t.

◊ The best strategy for decoder then is to pick the code vector d(ci,r)
closest to the received vector r, that is, the one for which
is smallest.

◊ With such a strategy, the decoder will be able to detect and correct
all error patterns of w(e)≤ t, we will show that dmin ≥ 2t+1.

error bits t≤

Minimum Distance Consideration

55

◊ We construct two spheres, each of radius t, around the points that
represent ci and cj.

◊ Let these two spheres are disjoint, d(ci,cj) ≥ 2t+1, as depicted in
Figure 10.23a.
◊ If the code vector ci is transmitted, and d(ci,r) ≤ t, it is clear that the decoder

will pick ci as it is the code vector closest to the received vector r.

Figure 10.23

Minimum Distance Consideration

56

◊ Let these two spheres are intersect, d(ci,r) ≤ 2t, as depicted in Figure
10.23b.
◊ If then the code vector is transmitted, there exists a received vector r, and

d(ci,r) ≤ 2t. But now, r is as close to ci as it is to cj, so there is now the
possibility of the decoder picking the vector cj, which is wrong.

Figure 10.23

ic

Minimum Distance Consideration

57

◊ An (n,k) linear block code has the power to correct all error patterns
of weight t or less if and only if

◊ By definition, the smallest distance between any pair of code vectors
is the minimum distance of the code, dmin.

◊ So, an (n,k) linear block code of minimum distance dmin can correct
up to t errors if, and only if,

(), 2 1 for all and i j i jd t≥ +c c c c

()min
1 1
2

t d ≤ −
()10.86

Minimum Distance Consideration

58

Syndrome Decoding - II

We are now ready to describe a syndrome-based decoding scheme
for linear block code.

◊ Let denote the 2k code vectors of an (n,k) linear block
code.

◊ r denote the receiver vector, which may have one of 2n possible
values.

◊ The receiver has the task of partitioning the 2n possible received
vector into 2k disjoint subset , Di is the ith subset
correspond to code vector ci for 1≤ i≤ 2k.

◊ For decoding to be correct, r must be in the subset that belongs to ci.

1 2 2
, , , kc c c

1 2 2
, , , kD D D

59

◊ The 2k subsets described herein constitute a standard array of the linear
block code.

◊ To construct it, we may exploit the linear structure of the code by
proceeding as follows:

1. The 2k code vectors are placed in a row with the all-zero code vector
c1 as the left-most element.

2. An error pattern e2 is picked and placed under c1, and a second row is
formed by adding e2 to each of the remaining code vectors in the first
row; it is important that the error pattern chosen as the first element in
a row not have previously appeared in the stand array. (Note that
e1=0).

3. Step 2 is repeated until all the possible error pattern have been
accounted for.

Syndrome Decoding - II

60

◊ Figure 10.24 illustrates the structure of the stand array.

◊ The 2n-k rows of the array represent the cosets of the code, and their
first elements are called coset leaders. 2 2

, , n k−e e

()Figure 10.24 Stand array for an , block coden k

Syndrome Decoding - II

61

◊ For a given channel, the probability of decoding error is minimized
when the most likely error are chosen as the coset leader.

◊ In the case of a binary symmetric channel, the smaller the Hamming
weight of an error pattern the more likely it is to occur.
The standard array should be constructed with each coset leader
having the minimum Hamming weight in its coset.

◊ Syndrome Decoding
1. For the received vector r, compute the syndrome s=rHT.
2. Within the coset characterized by the syndrome s, identify the coset leader

(i.e., the error pattern with the largest probability of occurrence); call it e0.
3. Compute the code vector

as the decoded version of the received vector r.

Syndrome Decoding - II

0= +c r e ()10.87

Wireless Information Transmission System Lab.
Institute of Communications Engineering
National Sun Yat-sen University

Convolutional Code

63

Structure of Convolutional Encoder

1 2 k 1 2 k 1 2 k

1 2 K

+ + ++

k bits

1 2 n-1 n

Output

64

Convoltuional Code

◊ Convolutional codes
◊ k = number of bits shifted into the encoder at one time

◊ k=1 is usually used!!

◊ n = number of encoder output bits corresponding to the k
information bits

◊ r = k/n = code rate
◊ K = constraint length, encoder memory

◊ Each encoded bit is a function of the present input bits and
their past ones.

65

Generator Sequence

◊

◊

.1 and ,1 ,0 ,1)1(
3

)1(
2

)1(
1

)1(
0 ==== gggg

Generator Sequence: g(1)=(1 0 1 1)

r0 r2r1
u v

r0 r2r1
u vr3

.1 and 0, ,1 ,1 ,1)2(
4

)2(
3

)2(
2

)2(
1

)2(
0 ===== ggggg

Generator Sequence: g(2)=(1 1 1 0 1)

66

Convolutional Codes
An Example – (rate=1/2 with K=2)

00 000

Present Next Output

00

1 00 10 11

010

1

0

1

0

1

01

00

10

10 01

10 11

11

11

01

11

11

00

01

10

10

01

x1 x2

G1(x)=1+x2

G2(x)=1+x1+x2

00

01 10

11

1(11)

0(01)

1(00)

1(01)

0(00)

0(11)

0(10) 1(10)

State Diagram

67

Trellis Diagram Representation

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Trellis termination: K tail bits with value 0 are usually added to the end of the code.

68

Encoding Process

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Input: 1 0 1 1 1 0 0
Output: 11 01 00 10 01 10 11

69

Viterbi Decoding Algorithm

◊ Maximum Likelihood (ML) decoding rule

◊ Viterbi Decoding Algorithm
◊ An efficient search algorithm

◊ Performing ML decoding rule.
◊ Reducing the computational complexity.

received sequence r
ML detected sequence d

min(d,r) !!

70

Viterbi Decoding Algorithm

◊ Basic concept
◊ Generate the code trellis at the decoder
◊ The decoder penetrates through the code trellis level by level in

search for the transmitted code sequence
◊ At each level of the trellis, the decoder computes and compares

the metrics of all the partial paths entering a node
◊ The decoder stores the partial path with the larger metric and

eliminates all the other partial paths. The stored partial path is
called the survivor.

71

Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Output: 11 01 00 10 01 10 11
Receive: 11 11 00 10 01 11 11

2

0

72

Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Output: 11 01 00 10 01 10 11
Receive: 11 11 00 10 01 11 11

2

0

4

2

1

1

73

Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Output: 11 01 00 10 01 10 11
Receive: 11 11 00 10 01 11 11

2

0

4

2

1

1

3

2

1

2

74

Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Output: 11 01 00 10 01 10 11
Receive: 11 11 00 10 01 11 11

2

0

4

2

1

1

3

2

1

2

3

2

3

1

75

Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Output: 11 01 00 10 01 10 11
Receive: 11 11 00 10 01 11 11

2

0

4

2

1

1

3

2

1

2

3

2

3

1

3

3

3

1

76

Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Output: 11 01 00 10 01 10 11
Receive: 11 11 00 10 01 11 11

2

0

4

2

1

1

3

2

1

2

3

2

3

1

3

3

3

1

3

2

77

Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Output: 11 01 00 10 01 10 11
Receive: 11 11 00 10 01 11 11

2

0

4

2

1

1

3

2

1

2

3

2

3

1

3

3

3

1

3

2

2

78

Viterbi Decoding Algorithm

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

000(00)

1(01)

0(00)

1(01)

0(00)

1(01)

0(00)0(00) 0(00) 0(00)

Decision:11 01 00 10 01 10 11
Receive: 11 11 00 10 01 11 11

2

0

4

2

1

1

3

2

1

2

3

2

3

1

3

3

3

1

3

2

2

Output: 10111(00)

	Chapter 10�Information and Forward Error Correction
	Outline
	Chapter 10.1� Introduction
	Chapter 10.1 Introduction
	Chapter 10.2� Uncertainty, Information, and Entropy
	Chapter 10.2 Uncertainty, Information, and Entropy
	Chapter 10.2 Uncertainty, Information, and Entropy
	Chapter 10.2 Uncertainty, Information, and Entropy
	Chapter 10.2 Uncertainty, Information, and Entropy
	Chapter 10.2 Uncertainty, Information, and Entropy
	Chapter 10.2 Uncertainty, Information, and Entropy
	Chapter 10.2 Uncertainty, Information, and Entropy
	Chapter 10.2 Uncertainty, Information, and Entropy
	Chapter 10.3� Source-Coding Theorem
	Chapter 10.3 Source-Coding Theorem
	Chapter 10.3 Source-Coding Theorem
	Chapter 10.3 Source-Coding Theorem
	Chapter 10.3 Source-Coding Theorem
	Chapter 10.4� Lossless Data Compression
	Chapter 10.4 Lossless Data Compression
	Chapter 10.4 Lossless Data Compression
	Chapter 10.4 Lossless Data Compression
	Chapter 10.4 Lossless Data Compression
	Chapter 10.4 Lossless Data Compression
	Chapter 10.4 Lossless Data Compression
	Chapter 10.4 Lossless Data Compression
	Chapter 10.4 Lossless Data Compression
	Chapter 10.4 Lossless Data Compression
	Chapter 10.4 Lossless Data Compression
	Error Detecting Code�(Cyclic Redundancy Code)
	Error Detecting Codes
	Error Detecting Codes
	Calculation of the polynomial code checksum
	Calculation of the polynomial code checksum
	Cyclic Redundancy Code (CRC)
	Linear Block Code
	Chapter 10.11 Linear Block Code
	Chapter 10.11 Linear Block Code
	Chapter 10.11 Linear Block Code
	Chapter 10.11 Linear Block Code
	Chapter 10.11 Linear Block Code
	Chapter 10.11 Linear Block Code
	Chapter 10.11 Linear Block Code
	Chapter 10.11 Linear Block Code
	Syndrome decoding - I
	Syndrome decoding - I
	Syndrome decoding - I
	Syndrome decoding - I
	Syndrome decoding - I
	Syndrome decoding - I
	Minimum Distance Consideration
	Minimum Distance Consideration
	Minimum Distance Consideration
	Minimum Distance Consideration
	Minimum Distance Consideration
	Minimum Distance Consideration
	Minimum Distance Consideration
	Syndrome Decoding - II
	Syndrome Decoding - II
	Syndrome Decoding - II
	Syndrome Decoding - II
	Convolutional Code
	Structure of Convolutional Encoder
	Convoltuional Code
	Generator Sequence
	Convolutional Codes�An Example – (rate=1/2 with K=2)
	Trellis Diagram Representation
	Encoding Process
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm
	Viterbi Decoding Algorithm

