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5.1 Introduction

◊ Fourier transform is a mathematical tool for the representation of 
deterministic signals.

◊ Deterministic signals: the class of signals that may be modeled as 
completely specified functions of time.

◊ A signal is “random” if it is not possible to predict its precise value 
in advance.

◊ A random process consists of an ensemble (family) of sample 
functions, each of which varies randomly with time.

◊ A random variable is obtained by observing a random process at a 
fixed instant of time.
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5.2  Probability 

◊ Probability theory is rooted in phenomena that, explicitly or 
implicitly, can be modeled by an experiment with an outcome that is 
subject to chance.
◊ Example: Experiment may be the observation of the result of 

tossing a fair coin. In this experiment, the possible outcomes of a 
trial are “heads” or “tails”.

◊ If an experiment has K possible outcomes, then for the kth possible 
outcome we have a point called  the sample point, which we denote 
by sk. With this basic framework, we make the following definitions:
◊ The set of all possible outcomes of the experiment is called the

sample space, which we denote by S.
◊ An event corresponds to either a single sample point or a set of 

sample points in the space S.
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5.2  Probability 

◊ A single sample point is called an elementary event.
◊ The entire sample space S is called the sure event; and the null set

is called the null or impossible event. 
◊ Two events are mutually exclusive if the occurrence of one event 

precludes the occurrence of the other event.
◊ A probability measure P is a function that assigns a non-negative 

number to an event A in the sample space S and satisfies the 
following three properties (axioms):
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5.2  Probability 
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◊ The following properties of probability measure P may be derived 
from the above axioms:

   
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◊ Let P[B|A] denote the probability of event B, given that event A has 
occurred. The probability P[B|A] is called the conditional
probability of B given A.

◊ P[B|A] is defined by

◊ Bayes’ rule
◊ We may write Eq.(5.7) as P[A∩B] = P[B|A]P[A]                        (5.8)
◊ It is apparent that we may also write P[A∩B] = P[A|B]P[B]       (5.9)
◊ From  Eqs.(5.8) and (5.9), provided  P[A] ≠ 0, we may determine P[B|A] by 

using the relation
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                                   5.7

A B
B A

A


   
P

P
P

 
                        5.10

A B B
B A

A
     

P P
P

P

5.2  Probability 
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5.2  Conditional Probability 

◊ Suppose that the condition probability P[B|A] is simply equal to the 
elementary probability of occurrence of event B, that is

so that 

◊ Events A and B that satisfy this condition are said to be
statistically independent.

 B A B   P P      A B A B P P P
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◊ Example 5.1 Binary Symmetric Channel
◊ This channel is said to be discrete in that it is designed to handle 

discrete messages.
◊ The channel is memoryless in the sense that the channel output at 

any time depends only on the channel input at that time.
◊ The channel is symmetric, which means that the probability of 

receiving symbol 1 when 0 is sent is the same as the probability 
of receiving symbol 0 when symbol 1 is sent.

5.2  Conditional Probability 
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◊ Example 5.1 Binary Symmetric Channel (continued)
◊ The a priori probabilities of sending binary symbols 0 and 1:

◊ The conditional probabilities of error:

◊ The probability of receiving symbol 0 is given by:

◊ The probability of receiving symbol 1 is given by:

 0 0A pP  1 1A pP

1 0 0 1B A B A p       P P

       0 0 0 0 0 1 1 0 11B B A A B A A p p pp         P P P P P

       1 1 0 0 1 1 1 0 11B B A A B A A pp p p         P P P P P

5.2  Conditional Probability 
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◊ Example 5.1 Binary Symmetric Channel (continued)
◊ The a posteriori probabilities P[A0|B0] and P[A1|B1]:

 
 
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 
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5.3  Random Variables 
◊ We denote the random variable as X(s) or just X.
◊ X is a function, s is the outcome of the experiment.
◊ Random variable may be discrete or continuous.
◊ Consider the random variable X and the probability of the event

X ≤ x. We denote this probability by P[X ≤ x].
◊ To simplify our notation, we write

◊ The function FX(x) is called the cumulative distribution 
function (cdf) or simply the distribution function of the random 
variable X. 

◊ The distribution function FX(x) has the following properties:

                                5.15XF x X x P

 
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5.3  Random Variables 

There may be more than one
random variable associated with

the same random experiment.
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5.3  Random Variables 

◊ If the distribution function is continuously differentiable, then

◊ fX(x) is called the probability density function (pdf) of the random 
variable X.

◊ Probability of the event x1 < X ≤ x2 equals

◊ Probability density function must always be a nonnegative function, 
and with a total area of one.

                              5.17X X
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dx
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◊ Example 5.2 Uniform Distribution

 
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5.3  Random Variables 
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◊ Several Random Variables
◊ Consider two random variables X and Y. We define the joint 

distribution function FX,Y(x,y) as the probability that the random 
variable X is less than or equal to a specified value x and that the 
random variable Y is less than or equal to a specified value y.         

◊ Suppose that  joint distribution function FX,Y(x,y) is continuous 
everywhere, and that the partial derivative

exists and is continuous everywhere. We call the function fX,Y(x,y) 
the joint probability density function of the random variables X 
and Y.

     , , ,                   5.23X YF x y X x Y y  P

     
2

,
,

,
,                        5.24X Y

X Y

F x y
f x y

x y



 

5.3  Random Variables 
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◊ Several Random Variables
◊ The joint distribution function FX,Y(x,y) is a monotone-

nondecreasing function of both x and y.
◊

◊ Marginal density fX(x)

◊ Suppose that X and Y are two continuous random variables with 
joint probability density function fX,Y(x,y). The conditional 
probability density function of Y given that X = x is defined by

         , ,,     ,    5.27
x

X X Y X X YF x f d d f x f x d     
 

  
    

   
   , ,

                       5.28X Y
Y

X

f x y
f y x

f x


 X,Y , 1f d d   
 

 
 

5.3  Random Variables 
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◊ Several Random Variables
◊ If the random variable X and Y are statistically independent, then 

knowledge of the outcome of X can in no way affect the 
distribution of Y.

             by 5.28
,   ,     5.32  Y Y X Y X Yf y x f y f x y f x f y  

       ,                5.33X A Y B X A Y B    P P P

5.3  Random Variables 
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◊ Example 5.3 Binomial Random Variable
◊ Consider a sequence of coin-tossing experiments where the 

probability of a head is p and let Xn be the Bernoulli random 
variable representing the outcome of the nth toss.

◊ Let Y be the number of heads that occur on N tosses of the coins:

1

N

n
n

Y X




   1 N yyN
Y y p p

y
 

   
 

P

 
!

! !
N N
y y N y

 
   

5.3  Random Variables 
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5.4  Statistical Averages

◊ The expected value or mean of a random variable X is defined by 

◊ Function of a Random Variable
◊ Let X denote a random variable, and let g(X) denote a real-

valued function defined on the real line. We denote as

◊ To find the expected value of the random variable Y.

                           5.36x XX xf x dx



  E

                              5.37Y g X

                 5.38Y xY yf y dy g X g x f x dx
 

 
     E E
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◊ Example 5.4 Cosinusoidal Random Variable
◊ Let Y=g(X)=cos(X)
◊ X is a random variable uniformly distributed in the interval (-π, π)

 
1 , 

2
0, otherwise

X

x
f x

 


    
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Y x dx
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


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







   
 





E

5.4  Statistical Averages
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◊ Moments
◊ For the special case of g(X) = X n, we obtain the nth moment of 

the probability distribution of the random variable X; that is 

◊ Mean-square value of     : 

◊ The nth central moment is

                    5.39n n
XX x f x dx




    E

X

   2 2                  5.40XX x f x dx



    E

              5.41n n
X X XX x f x dx 




     E

5.4  Statistical Averages
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◊ For n = 2 the second central moment is referred to as the variance of 
the random variable X, written as 

◊ The variance of a random variable X is commonly denoted as      . 
◊ The square root of the variance is called the standard deviation of 

the random variable X.
◊

         2 2Var     5.42X X XX X x f x dx 



      E

2
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   

 
 
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◊ Characteristic function is defined as the expectation of the 
complex exponential function  exp( jυX ), as shown by 

◊ In other words , the characteristic function             is the Fourier 
transform of the probability density function fX(x). 

◊ Analogous with the inverse Fourier transform:

 X 

         exp exp      5.45X Xj j X f x j X dx   



    E

 X 

       1 exp          5.46
2X Xf x j j X d   





 

5.4  Statistical Averages
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◊ Characteristic functions
◊ First moment (mean) can be obtained by:

◊ Since the differentiation process can be repeated, n-th
moment can be calculated by:

0

)()()(



v

n

n
nn

dv
jvdjXE 

0

)()(

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5.4  Statistical Averages
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◊ Characteristic functions
◊ Determining the PDF of a sum of statistically independent

random variables:

  1 2

1 1

, ,..., 1 2 1 2
1 1

      ( ) ( ) exp

... ( , ,..., ) ...
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i i
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 
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 



  

 
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◊ Characteristic functions
◊ The PDF of Y is determined from the inverse Fourier 

transform of ΨY(jv).
◊ Since the characteristic function of the sum of n statistically 

independent random variables is equal to the product of the 
characteristic functions of the individual random variables, it 
follows that, in the transform domain, the PDF of Y is the n-
fold convolution of the PDFs of the Xi.

◊ Usually, the n-fold convolution is more difficult to perform 
than the characteristic function method in determining the PDF 
of Y.

5.4  Statistical Averages
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◊ Example 5.5 Gaussian Random Variable
◊ The probability density function of such a Gaussian random 

variable is defined by:

◊ The characteristic function of a Gaussian random variable with 
mean mx and variance σ2 is (Problem 5.1):

◊ It can be shown that the central moments of a Gaussian random 
variable are given by:
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◊ Example 5.5 Gaussian Random Variable (cont.)
◊ The sum of n statistically independent Gaussian random 

variables is also a Gaussian random variable.
◊ Proof:

   
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◊ Joint Moments
◊ Consider next a pair of random variables X and Y. A set of 

statistical averages of importance in this case are the joint 
moments, namely, the expected value of Xi Y k, where i and k 
may assume any positive integer values. We may thus write

◊ A joint moment of particular importance is the correlation
defined by E[XY], which corresponds to i = k = 1. 

◊ Covariance of X and Y :

   , ,       5.51i k i k
X YX Y x y f x y dxdy

 

 
     E

           Cov  =   5.53X YXY X X Y Y XY       E E E E

5.4  Statistical Averages



32

◊ Correlation coefficient of X and Y : 

◊ σX and σY denote the variances of X and Y.

◊ We say X and Y are uncorrelated if and only if Cov[XY] = 0.
◊ Note that if X and Y are statistically independent, then they are 

uncorrelated.
◊ The converse of the above statement is not necessarily true.

◊ We say X and Y are orthogonal if and only if E[XY] = 0.

   Cov
                  5.54

X Y

XY


 


5.4  Statistical Averages
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◊ Example 5.6 Moments of a Bernoulli Random Variable
◊ Consider the coin-tossing experiment where the probability of a 

head is p. Let X be a random variable that takes the value 0 if the 
result is a tail and 1 if it is a head. We say that X is a Bernoulli 
random variable.

 
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5.5  Random Processes 

             1 2 1 2, , , , , , , ,k k n k k k k nx t x t x t X t s X t s X t s For a fixed time instant tk,                                                                  constitutes a random variable.

An ensemble of sample functions.
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5.5  Random Processes 

◊ At any given time instant, the value of a stochastic process 
is a random variable indexed by the parameter t.  We 
denote such a process by X(t).

◊ In general, the parameter t is continuous, whereas X may 
be either continuous or discrete, depending on the 
characteristics of the source that generates the stochastic 
process.

◊ The noise voltage generated by a single resistor or a single 
information source represents a single realization of the 
stochastic process.  It is called a sample function.
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◊ The set of all possible sample functions constitutes an 
ensemble of sample functions or, equivalently, the 
stochastic process X(t).

◊ In general, the number of sample functions in the 
ensemble is assumed to be extremely large; often it is 
infinite.

◊ Having defined a stochastic process X(t) as an ensemble of 
sample functions, we may consider the values of the 
process at any set of time instants t1>t2>t3>…>tn, where n
is any positive integer.

◊  
 1 2

In general, the random variables , 1, 2,..., ,  are

characterized statistically by their joint PDF , ,..., .
i

n

t i

X t t t

X X t i n

f x x x

 

5.5  Random Processes 
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◊ Stationary stochastic processes
◊

◊

◊ When the joint PDFs are different, the stochastic process is 
non-stationary.

 

 1 2

Consider another set of  random variables ,

1, 2,..., ,  where  is an arbitrary time shift.  These random

variables are characterized by the joint PDF , ,..., .

i

n

t t i

X t t t t t t

n X X t t

i n t

f x x x



  

 



   1 2 1 2

The joint PDFs of the random variables  and 1 2 ,

may or may not be identical.  When they are identical, i.e., when

                  , ,..., , ,...,

for all  a

i i

n n

t t t

X t t t X t t t t t t

X X ,i , ,...,n

f x x x f x x x

t



  





nd all , it is said to be stationary in the strict sense(SSS).n

5.5  Random Processes 
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◊ Averages for a stochastic process are called ensemble averages.
◊

◊

◊

   
The th moment of the random variable  is defined as:

                      

i

i i i i

t

n n
t t X t t

n X

E X x f x dx



 

.on  depends  of PDF  theif instant  time
on the depend  willmomentth   theof  value thegeneral,In 

iti tXt
n

i

   When the process is stationary,  for all .

Therefore, the PDF is independent of time, and, as a
consequence, the th moment is independent of time.

i iX t t X tf x f x t

n

 

5.5  Random Processes 
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◊ Two random variables:
◊ The correlation is measured by the joint moment:

◊ Since this joint moment depends on the time instants t1 and 
t2, it is denoted by RX(t1 ,t2).

◊ RX(t1 ,t2) is called the auto-correlation function of the 
stochastic process.

◊ For a stationary stochastic process, the joint moment is:

◊

◊ Average power in the process X(t): RX(0)=E(Xt
2).

  , 1, 2.
it iX X t i 

1 2 1 2 1 2(  ) ( , ) ( ) ( )t t X X XE X X R t t R t t R    

   1 2 1 2 1 2 1 2
,t t t t X t t t tE X X x x f x x dx dx

 

 
  

' '
1 1 1 1 1 1

( ) (  ) ( ) (  ) ( )X t t t t Xt t
R E X X E X X E X X R  

   
    

5.5  Random Processes 
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◊ Wide-sense stationary (WSS)
◊ A wide-sense stationary process has the property that the 

mean value of the process is independent of time (a 
constant) and where the autocorrelation function satisfies 
the condition that RX(t1,t2)=RX(t1-t2).

◊ Wide-sense stationarity is a less stringent condition than 
strict-sense stationarity.

5.5  Random Processes 
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◊ Auto-covariance function
◊ The auto-covariance function of a stochastic process is 

defined as:

◊ When the process is stationary, the auto-covariance 
function simplifies to:

◊ For a Gaussian random process, higher-order moments can 
be expressed in terms of first and second moments.  
Consequently, a Gaussian random process is completely 
characterized by its first two moments.

1 2

2
1 2( , ) ( ) ( ) ( )t t X X XCov X X C t t C R m     

      
     

1 2 1 21 2

1 2 1 2

,

,

t t t t

X

Cov X X E X m t X m t

R t t m t m t

        
 

5.5  Random Processes 
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5.6  Mean, Correlation and Covariance Functions

◊ Consider a random process X(t). We define the mean of the  
process X(t) as the expectation of the random variable obtained by 
observing the process at some time t, as shown by

◊ A random process is said to be stationary to first order if the 
distribution function (and therefore density function) of X(t) does 
not vary with time.

◊ The mean of the random process is a constant.
◊ The variance of such a process is also constant.

                             5.57X X tt X t xf x dx



    E

           
1 2 1 2for all  and      for all     5.59X XX t X tf x f x t t t t   



43

◊ We define the autocorrelation function of the process X(t) as the 
expectation of the product of two random variables X(t1) and X(t2).  

◊ We say a random process X(t) is stationary to second order if the 
joint distribution                           depends on the difference between 
the observation time t1 and t2.

◊ The autocovariance function of a stationary random process X(t) is 
written as 

     

       
1 2

1, 2 1 2

1 2 1 2 1 2,      5.60

X

X t X t

R t t X t X t

x x f x x dx dx
 

 

   

  

E

     
1 2 1 2,X t X tf x x

     1 2 2 1 1 2,   for all  and          5.61X XR t t R t t t t 

           2
1 2 1 2 2 1,  5.62X X X X XC t t X t X t R t t         E

5.6  Mean, Correlation and Covariance Functions
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◊ For convenience of notation, we redefine the autocorrelation 
function of a stationary process X(t) as

◊ This autocorrelation function has several important properties:

◊ Proof of (5.64) can be obtained from (5.63) by putting τ = 0.

         for all             5.63XR X t X t t    E

     
     
     

2 0                                 5.64

                                     5.65

  0                                      5.67

X

X X

X X

R X t

R R

R R

 



   
 



1. E

2.

3.
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◊ Proof of (5.65):

◊ Proof of (5.67):

    
       

   
     
   

2

2 2

0 

2 0

2 0 2 0

0 0

0

X X

X X X

X X

X t X t

X t X t X t X t

R R

R R R

R R



 







   
 

             
  

   

 

E

E E E

           X XR X t X t X t X t R              E E
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◊ The physical significance of the autocorrelation function RX(τ) is that 
it provides a means of describing the “interdependence” of two 
random variables obtained by observing a random process   
X(t) at times τ seconds apart.

5.6  Mean, Correlation and Covariance Functions
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◊ Example 5.7 Sinusoidal Signal with Random Phase.
◊ Consider a sinusoidal signal with random phase:

   cos 2 cX t A f t   
1 , 

2
0, elsewhere

f
  

 

    
     

   

   

 

2 2

2 2

2

cos 4 2 2 cos 2
2 2

1 cos 4 2 2 cos 2
2 2 2

cos 2
2

X

c c c

c c c

c

R X t X t

A Af t f f

A Af t f d f

A f





 

    

      


 



   
 

        
 

   





E

E E

5.6  Mean, Correlation and Covariance Functions



48

◊ Averages for joint stochastic processes
◊ Let X(t) and Y(t) denote two stochastic processes and let 

Xti≡X(ti), i=1,2,…,n, Yt’j
≡Y(t’j), j=1,2,…,m, represent the 

random variables at times t1>t2>t3>…>tn, and 
t’1>t’2>t’3>…>t’m , respectively.  The two processes are 
characterized statistically by their joint PDF:

◊ The cross-correlation function of X(t) and Y(t), denoted by 
Rxy(t1,t2), is defined as the joint moment:

◊ The cross-covariance is:
1 2 1 2 1 2 1 21 2( , ) (  ) ( , )xy t t t t XY t t t tR t t E X Y x y f x y dx dy

 

 
   

1 2 1 2 1 2( , ) ( , ) ( ) ( )t t xy x yCov X Y R t t m t m t 

 ' ' '1 2 1 2
, ,..., , , ,...,

n m
XY t t t t t t

f x x x y y y

5.6  Mean, Correlation and Covariance Functions
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◊ Averages for joint stochastic processes
◊ When the process are jointly and individually stationary, we 

have Rxy(t1,t2)=Rxy(t1-t2), and μxy(t1,t2)= μxy(t1-t2):

◊ The stochastic processes X(t) and Y(t) are said to be 
statistically independent if and only if :

for all choices of ti and t’i and for all positive integers n and m.
◊ The processes are said to be uncorrelated if

' ' ' '1 1 1 1 1 1
( ) ( ) ( ) ( ) ( )xy t t yxt t t t

R E X Y E X Y E Y X R  
   
    

' ' ' ' ' '1 2 1 21 2 1 2
( , ,...,  ,  , ,..., ) ( , ,..., ) ( , ,..., )

n nm m
XY t t t X t t t Yt t t t t t

f x x x y y y f x x x f y y y

1 21 2( , ) ( ) ( )     xy t tR t t E X E Y 
1 2

( , ) 0t tCov X Y 

5.6  Mean, Correlation and Covariance Functions
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◊ Example 5.9 Quadrature-Modulated Processes
◊ Consider a pair of quadrature-modulated processes X1(t) and X2(t):

     
     
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c
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      

         

      

 

E

E

E E

E
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◊ Ergodic Processes
◊ In many instances, it is difficult or impossible to observe all sample 

functions of a random process at a given time.
◊ It is often more convenient to observe a single sample function for a 

long period of time.
◊ For a sample function x(t), the time average of the mean value over 

an observation period 2T is 

◊ For many stochastic processes of interest in communications, the 
time averages and ensemble averages are equal, a property known as 
ergodicity.

◊ This property implies that whenever an ensemble average is required, 
we may estimate it by using a time average.

   ,
1                             5.84

2
T

x T T
x t dt

T



 
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5.7  Transmission of a Random Process Through 
a Linear Filter

◊ Suppose that a random process X(t) is applied as input to linear 
time-invariant filter of impulse response h(t), producing a new 
random process Y(t) at the filter output.

◊ Assume that X(t) is a wide-sense stationary random process.
◊ The mean of the output random process Y(t) is given by

       

   

     

1 1 1

1 1 1

1 1 1

         =

                          5.86

Y

X

t Y t h X t d

h X t d

h t d

   

  

   













        

  

 






E E
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◊ When the input random process X(t) is wide-sense stationary, the 
mean            is a constant      , then mean           is also a constant      .

where H(0) is the zero-frequency (dc) response of the system.

◊ The autocorrelation function of the output random process Y(t) is 
given by:

 X t X  Y t Y

       1 1 0        5.87Y X Xt h d H    



 

             

       

     

1 1 1 2 2 2

1 1 2 2 1 2

1 1 2 2 1 2

,

,

Y

X

R t u Y t Y u h X t d h X u d

d h d h X t X u

d h d h R t u

     

     

     

 

 

 

 

 

 

         
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◊ When the input X(t) is a wide-sense stationary random process, the 
autocorrelation function of X(t) is only a function of the difference 
between the observation times:

◊ If the input to a stable linear time-invariant filter is a wide-sense 
stationary random process, then the output of the filter is also a 
wide-sense stationary random process.

         1 2 1 2 1 2            5.90Y XR h h R d d       
 

 
   
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5.8  Power Spectral Density

◊ The Fourier transform of the autocorrelation function RX(τ) is called 
the power spectral density SX( f ) of the random process
X(t).

◊ Equations (5.91) and (5.92) are basic relations in the theory of 
spectral analysis of random processes, and together they constitute 
what are usually called the Einstein-Wiener-Khintchine relations.

       exp 2             5.91X XS f R j f d   



 

       exp 2                5.92X XR S f j f df  



 
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◊ Properties of the Power Spectral Density
◊ Property 1:

◊ Proof: Let f =0 in Eq. (5.91)

◊ Property 2:

◊ Proof: Let τ =0 in Eq. (5.92) and note that RX(0)=E[X2(t)].

◊ Property 3:

◊ Property 4:
◊ Proof: From (5.91)

     0                  5.93X XS R d 



 

     2            5.94XX t S f df



    E

   0  for all                       5.95XS f f

                             5.96X XS f S f 

     
   

     exp 2 exp 2
X X

X X X XR R
S f R j f d R j f d S f

 

 
       

 

  
     

5.8  Power Spectral Density



57

◊ It can be shown that (see eq. 5.106) 

◊ Suppose we let |H( f )|2=1 for any arbitrarily small interval f1 ≤ f ≤ f2 , 
and H( f )=0 outside this interval.  Then, we have:

This is possible if an only if SX( f )≥0 for all f.

◊ Conclusion: SX( f )≥0 for all f.

 2

1

0
f

Xf
S f df 

Proof of Eq. (5.95)

      2
Y XS f S f H f

           2
exp 2 exp 2Y Y XR S f j f df S f H f j f df    

 

 
  

         220 0  for any Y XR E Y t S f H f df H f



     

(5.64)
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◊ Example 5.10  Sinusoidal Signal with Random Phase
◊ Consider the random process X(t)=Acos(2πfc t+Θ), where Θ is a 

uniformly distributed random variable over the interval (-π,π).
◊ The autocorrelation function of this random process is given in 

Example 5.7:

◊ Taking the Fourier transform of both sides of this relation:

   
2

cos 2    (5.74)
2X c
AR f  

     
2

  (5.97)
4X c c
AS f f f f f      
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◊ Example 5.12 Mixing of a Random Process with a 
Sinusoidal Process
◊ A situation that often arises in practice is that of mixing (i.e., 

multiplication) of a WSS random process X(t) with a sinusoidal 
signal cos(2πfc t+Θ), where the phase Θ is a random variable that 
is uniformly distributed over the interval (0,2π).

◊ Determining the power spectral density of the random process Y(t) 
defined by:

◊ We note that random variable Θ is independent of X(t) .

     cos 2                      (5.101)cY f X t f t 

5.8  Power Spectral Density



60

◊ Example 5.12 Mixing of a Random Process with a 
Sinusoidal Process (continued)
◊ The autocorrelation function of Y(t) is given by:
     

       
       

     

   

cos 2 2 cos 2

cos 2 2 cos 2

1 cos 2 cos 4 2 2
2
1 cos 2
2

Y

c c c

c c c

X c c c

X c

R Y t Y t

X t f t f X t f t

X t X t f t f f t

R f f t f

R f

 

    

    

     

  

   
      

         

      



E

E

E E

E

     1                   (5.103)
4Y X c X cS f S f f S f f     

Fourier transform
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◊ Relation among the Power Spectral Densities of the Input and 
Output Random Processes
◊ Let SY( f ) denote the power spectral density of the output random process Y(t) 

obtained by passing the random process through a linear filter of transfer 
function H( f ).

   

     

2

2
1 2 1 2 1 2

j f
Y Y

j f
X

S f R e d

h h R e d d d

 

 

 

       

 



   

  



  


  

1 2 0Let      

       

     

           

0 1 2

01 2

2
1 2 0 1 2 0

22 2
1 1 2 2 0 0

2
                5.106

j f
X

j fj f j f
X

X X

h h R e d d d

h e d h e d R e d

H f H f S f H f S f

   

    

     

     

     

  

   

  







 

  
  

         1 2 1 2 1 2 5.90Y XR h h R d d       
 

 
   
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◊ The sources of noise may be external to the system (e.g., 
atmospheric noise, galactic noise, man-made noise), or internal to 
the system.

◊ The second category includes an important type of noise that arises 
from spontaneous fluctuations of current or voltage in electrical 
circuits. This type of noise represents a basic limitation on the 
transmission or detection of signals in communication systems 
involving the use of electronic devices.

◊ The two most common examples of spontaneous fluctuations in 
electrical circuits are shot noise and thermal noise.

5.10 Noise
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◊ Thermal Noise
◊ Thermal noise is the name given to the electrical noise arising 

from the random motion of electrons in a conductor.

◊ The mean-square value of the thermal noise voltage VTN , 
appearing across the terminals of a resistor, measured in a 
bandwidth of Δf Hertz, is given by:

k : Boltzmann’s constant=1.38 ×10-23 joules per degree Kelvin.
T : Absolute temperature in degrees Kelvin.
R: The resistance in ohms.

2 24  voltsTNV kTR f    E
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◊ White Noise
◊ The noise analysis is customarily based on an idealized form of 

noise called white noise, the power spectral density of which is 
independent of the operating frequency.

◊ White is used in the sense that white light contains equal 
amount of all frequencies within the visible band of 
electromagnetic radiation.

◊ We express the power spectral density of white noise, with a 
sample function denoted by w(t), as

  0

2W
NS f 

0 eN kT

The dimensions of N0 are in watts per Hertz, k is Boltzmann’s 
constant and Te is the equivalent noise temperature of the receiver.
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◊ White Noise
◊ The equivalent noise temperature of a system is defined as the 

temperature at which a noisy resistor has to be maintained such 
that, by connecting the resistor to the input of a noiseless 
version of the system, it produces the same available noise 
power at the output of the system as that produced by all the 
sources of noise in the actual system.

◊ The autocorrelation function is the inverse Fourier transform of 
the power spectral density:

◊ Any two different samples of white noise, no matter how 
closely together in time they are taken, are uncorrelated.

◊ If the white noise w(t) is also Gaussian, then the two samples 
are statistically independent.

   0τ τ
2W

NR 
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◊ Example 5.14  Ideal Low-Pass Filtered White Noise
◊ Suppose that a white Gaussian noise w(t) of zero mean and 

power spectral density N0/2 is applied to an ideal low-pass filter 
of bandwidth B and passband amplitude response of one.

◊ The power spectral density of the noise n(t) is

◊ The autocorrelation function of n(t) is

 
0 , 

2
0, 

N

N B f B
S f

f B

    
 

   

 

0

0

τ exp 2π τ
2
 sinc 2Bτ

B

N B

NR j f df

N B







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