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Fourier transform is a mathematical tool for the representation of
deterministic signals.

Deterministic signals: the class of signals that may be modeled as
completely specified functions of time.

A signal 1s “random” if 1t 1s not possible to predict its precise value
in advance.

A random process consists of an ensemble (family) of sample
functions, each of which varies randomly with time.

A random variable 1s obtained by observing a random process at a
fixed instant of time.
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o Probability theory 1s rooted in phenomena that, explicitly or
implicitly, can be modeled by an experiment with an outcome that 1s

subject to chance.

o Example: Experiment may be the observation of the result of
tossing a fair coin. In this experiment, the possible outcomes of a
trial are “heads” or “tails”.

o If an experiment has K possible outcomes, then for the Ath possible
outcome we have a point called the sample point, which we denote
by s,. With this basic framework, we make the following definitions:

o The set of all possible outcomes of the experiment 1s called the
sample space, which we denote by S.

o An event corresponds to either a single sample point or a set of
sample points in the space S.
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o A single sample point is called an elementary event.

o The entire sample space S 1s called the sure event; and the null set

¢ 1is called the null or impossible event.

o Two events are mutually exclusive if the occurrence of one event
precludes the occurrence of the other event.

o A probability measure P 1s a function that assigns a non-negative
number to an event 4 in the sample space S and satisfies the
following three properties (axioms):

1.0<P[4]<1 (5.1)

2. P[S]=1 (5.2)

3. If 4 and B are two mutually exclusive events, then
P[4UB|=P[A4]+P|B] (5.3)
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o The following properties of probability measure P may be derlved
from the above axioms:

1.P|4]=1-P[4] (5.4)
2. When events A and B are not mutually exclusive:

P[4UB]=P[A]+P[B]-P[4nB] (5.5)
3.1t 4,,4,,...,A are mutually exclusive events that include all

possible outcomes of the random experiment, then
Pl4]+P[4,]+...+P[4,]=1 (5.6)
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o Let P[B|A] denote the probability of event B, given that event A has
occurred. The probability P[B|A] 1s called the conditional
probability of B given A.

P[B|A4] is defined by

P[4 B]
oA (5.7)

P Bl4]=

o Bayes’ rule
o We may write Eq.(5.7) as P[ANB] = P[B|4]P[A4] (5.8)
o It 1s apparent that we may also write P[ANB] = P[A|B]P[B] (5.9)

o From Eqgs.(5.8) and (5.9), provided P[A4] # 0, we may determine P[B|A4] by
using the relation

P[A|B]P

P|Bl4]= ] (5.10)
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o Suppose that the condition probability P[B|A4] 1s simply equal to the
clementary probability of occurrence of event B, that 1s

P[B|4|=P[B] == P[4 B]=P[4]P[B]

so that P[AnB] P[A]P[B

PLAIE]- [P[B] ) [P][B" |

o Events 4 and B that satisfy this condition are said to be
statistically independent.

=P[4]  (5.13)
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o Example 5.1 Binary Symmetric Channel

o This channel 1s said to be discrete in that it is designed to handle
discrete messages.

o The channel 1s memoryless in the sense that the channel output at
any time depends only on the channel input at that time.

o The channel 1s symmetric, which means that the probability of
receiving symbol 1 when 0 is sent 1s the same as the probability
of receiving symbol 0 when symbol 1 is sent.

1- P
Ag = By

P

4
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o Example 5.1 Binary Symmetric Channel (continued)
o The a priori probabilities of sending binary symbols 0 and 1:

P[Aﬂ]:po P[Al]:pl

o The conditional probabilities of error:

PB4, |=P[B)|4]=p
o The probability of receiving symbol 0 1s given by:

P[B,]=P| B,|4, |P[4,]+P| B,|4 |P[4]=(1-P) P, + PP,
o The probability of receiving symbol 1 1s given by.

P[B]=P| B,|4, |P[4,]+P]| B |4 |P[4]=ppr,+(1-P) P,

11
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o Example 5.1 Binary Symmetric Channel (continued)
o The a posteriori probabilities P[4,|B,] and P[4,|B,]:

P[BO\AO]P[AO]: (1= p)p,
P[B,] (1-p) 7o + 1,

Pl 4,|B, |=

PB4 |P[4]  (1-p)p
P[Bl] PP, -|-(1_p)p1

Pl 4|B, |=

12
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We denote the random variable as X(s) or just X.

X 1s a function, s 1s the outcome of the experiment.

Random variable may be discrete or continuous.

Consider the random variable X and the probability of the event
X <x. We denote this probability by P[.X <x].
To simplify our notation, we write
FX(x):P[XSx] (5.15)
o The function F'(x) 1s called the cumulative distribution

function (cdf) or simply the distribution function of the random
variable X.

The distribution function F,(x) has the following properties:
1.0<F (x)<1
2.F (x,)<F, (x,) ifx <x,

13



5.3 Random Variables

Random
variable
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A

Probability

There may be more than one
random variable associated with
the same random experiment.
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o If the distribution function 1s continuously differentiable, then
d
S (x) =—F (x) (5.17)

o fy(x) 1s called the probability density function (pdf) of the random
variable X.

o Probability of the event x; < X <x, equals
Plx, <X <x,|=P[X <x,]-P[X <x]
=F, (%)~ Fy (x) —== Fy(x)=[ fe(e)e (5.19)
=[S (x)

o Probability density function must always be a nonnegative function,
and with a total area of one.

15



5.3 Random Variables

o Example 5.2 Uniform Distribution

fX(x):<

o\
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a<x<bh

x>b
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Fy(x)
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o Several Random Variables

o Consider two random variables X and Y. We define the joint
distribution function Fy {x,y) as the probability that the random
variable X 1s less than or equal to a specified value x and that the
random variable Y 1s less than or equal to a specified value y.

Fy, (x,y) = P[X <xY < y] (5.23)

o Suppose that joint distribution function F'y (x,y) 18 continuous
everywhere, and that the partial derivative

0°'F Yy (x, y)
Ox0y

SFry (x,y)= (5.24)

exists and 1s continuous everywhere. We call the function f (x,y)
the joint probability density function of the random variables X
and Y.

17



5.3 Random Variables

o Several Random Variables

o The joint distribution function Fy ,(x,y) 1s a monotone-
nondecreasing function of both x and y.

U Ao (ém)agan =1
o Marginal density f{x)
)= || fer(Em)dédn — [ (x)=] fyy(xm)dn (5.27)

o Suppose that X and Y are two continuous random variables with
joint probability density function fy (x,y). The conditional
probability density function of Y given that X = x is defined by

£ o) L2 (5.25)

18
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o Several Random Variables

o If the random variable X and Y are statistically independent, then
knowledge of the outcome of X can in no way affect the
distribution of Y.

fY(J/‘x):fy(J’) iz fXY(x Y) fX(X)fy(y) (5.32)

!

P[XeA4,YeB|=P|X e A|P|Y eB] (5.33)

19
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o Example 5.3 Binomial Random Variable

o Consider a sequence of coin-tossing experiments where the
probability of a head is p and let X, be the Bernoulli random
variable representing the outcome of the nth toss.

o Let Y be the number of heads that occur on N tosses of the coins:

v .
Y:ZX” 0.16-
n=1 30.14—:

N L
P[Y:y]:( jpy(l—p)Ny f oo
y go.os__

(Nj_ N! 0.04—:

Random Variable Y

20
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o The expected value or mean of a random variable X 1s defined by

s :E[X]:jjofo (x)dx (5.36)

o Function of a Random Variable

o Let X denote a random variable, and let g(X) denote a real-
valued function defined on the real line. We denote as

Y=g(X) (5.37)
o To find the expected value of the random variable Y.

)= (v)dy — E[g(X)]=]" g(x)f,(x)dx (538)

21



5.4 Statistical Averages

o Example 5.4 Cosinusoidal Random Variable

o Let Y=g(X)=cos(X)

o X 1s a random variable uniformly distributed in the interval (-z, 7)

—, —T<X<~T

f)((x):< 27

0, otherwise

e[r)=" (cosx)(Ljdx

7 2

|
=—sIinx

T
X=—7

22



5.4 Statistical Averages

o Moments

o For the special case of g(X) = X", we obtain the nth moment of
the probability distribution of the random variable X; that 1s

E[X”]:jjox”fX (x)dx (5.39)
o Mean-square value of X:
E[Xz]:jixzf)( (x)dx (5.40)

o The nth central moment 1s

E| (X —p)' |=[ (=) fu(x)ax (541)

23
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o For n =2 the second central moment is referred to as the variance of
the random variable X, written as

Var[X]=E| (X -, )" |= [ (x=p1 ) f(x)dx  (5.42)

o The variance of a random variable X is commonly denoted as o7 .

o The square root of the variance 1s called the standard deviation of

the random variable X.

¢ oy =Var[X|=

—El x2

E[(X_,UX)ZJ

_2ﬂXX+ﬂ)2(:|
) _ZﬂXE[X]'l'/u)z(

—,uf( (5.44)

24
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o Characteristic function ¢, (v) is defined as the expectation of the
complex exponential function exp(joX ), as shown by

WX(ju)zE[exp(qu ij Jexp(joX)dx  (5.45)

o In other words , the characteristic function ¢, (v) is the Fourier
transform of the probability density function f(x).

o Analogous with the inverse Fourier transform:

£, (x) = i [“ v, (jo)exp(-jox)dv  (5.46)

25



5.4 Statistical Averages

o Characteristic functions

o First moment (mean) can be obtained by:

B =m, = j )

v=0

o Since the differentiation process can be repeated, n-th
moment can be calculated by:

By =y LEU

v=0

26



5.4 Statistical Averages

o Characteristic functions

o Determining the PDF of a sum of statistically independent
random variables:

Y= in‘ =y, (V) =E")= E|:€Xp£jviXiji|

= E{ﬁ(ewf’ )} = '[:jjo (ﬁ e’™ JfXI,Xz,---,Xn (X, X, ,..0, X, )dx,dx, ...dx
i=1

i=1

Since the random variables are statistically independent,

le,Xz,...,Xn (X, X505 X,) = le (xl)sz (xz)---fxn (x,) = w,(yv)= HWXi (Jv)
i=1
If X, are 11d (independent and 1dentically distributed)
= (M =[y, (]

27



5.4 Statistical Averages

o Characteristic functions

o The PDF of Y is determined from the inverse Fourier
transform of ¥y(jv).

o Since the characteristic function of the sum of » statistically
independent random variables 1s equal to the product of the
characteristic functions of the individual random variables, it
follows that, in the transform domain, the PDF of Y 1s the n-
fold convolution of the PDFs of the X..

o Usually, the n-fold convolution is more difficult to perform

than the characteristic function method in determining the PDF
of V.

28



5.4 Statistical Averages

o Example 5.5 Gaussian Random Variable

o The probability density function of such a Gaussian random
variable 1s defined by:

(x =y )2

1
fX(x):\/EO' eXp| =5 | —00 < X <00
X X

o The characteristic function of a Gaussian random variable with
mean m_ and variance o2 is (Problem 5.1):

l//(]V) — J:io ejvx {ﬁ 8_(x_mx )20 :|dx — ejvmx—(l/Z)v20'2

o It can be shown that the central moments of a Gaussian random
variable are given by:

E[(X -m ) |=p, ={

1-3---(k=1)c* (even k)
0 (odd k)

29
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o Example 5.5 Gaussian Random Variable (cont.)

o The sum of n statistically independent Gaussian random
variables is also a Gaussian random variable.

Y = i){i
i=1

Wy(jV) = HWXZ- (]v) — Hejvmi—vzo-l.z/Z _ ejvmy_v2o.§/2

i=1 i=1

o Proof:

n n

2 2

where m, = E m;, and o, = E of
i=1 i=1

Therefore,Y 1s Gaussian-distributed with mean m,

and Varianceai .

30
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o Joint Moments

o Consider next a pair of random variables X and Y. A set of
statistical averages of importance in this case are the joint
moments, namely, the expected value of X’ Y ¥, where i and k&
may assume any positive integer values. We may thus write

[X Yk] I j fXY xy)dxdy (5.51)

o A joint moment of particular importance 1s the correlation
defined by E[XY], which corresponds to i = k= 1.

o Covariance of Xand Y :

Cov[XY]=E| (X -E[X])(Y-E[Y]) | = E[XY]- s, (5.53)

31



5.4 Statistical Averages

o Correlation coefficient of X and Y :

_ COV[XY]

O xOy

P (5.54)

o o, and oy denote the variances of X and Y.

o We say X and Y are uncorrelated 1f and only 1f Cov[XY] = 0.

o Note that if X and Y are statistically independent, then they are
uncorrelated.

o The converse of the above statement 1s not necessarily true.

o We say X and Y are orthogonal 1f and only 1f E[XY] = 0.

32
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o Example 5.6 Moments of a Bernoulli Random Variable

o Consider the coin-tossing experiment where the probability of a
head is p. Let X be a random variable that takes the value O 1f the
result is a tail and 1 1f i1t 1s a head. We say that X 1s a Bernoulli
random variable.

(1-p x=0 1
P(X=x)=1p x=I E[X]:kZ;kP(X:k):O.(l—p)+1.p:p
0 otherwise (E[X]]E[Xk] itk
1 2 E| XX, |= 2 |
o =2 (k=) PX =] | Bl =k
- VENEY:
:(O—p)z(l—p)-l—(l—p)2 :<]; j’:k
=p(1-p) “

where the E[Xf] = Z;:O k*P [X = k].

33



5.5 Random Processes

=me - An ensemble of sample functions.

space
S
xl(!) |
|
|
|
Xl(fk) |
0 | Outcome of the
AQV&“*AQ&% first trial of
| the experiment
|
|
(1) |
t
= xp(8) :
|
\ Outcome of the
Wv’%‘% second trial of
0 | the experiment
|
|
|
|
x,,(1) !
" xn(rk) I
AT | BHlmeer f1s
nth trial of
_T 0 | +T the experiment
|
[ —>
For a fixed time instant z,, {x (4).x (4 ),.-.x, (t.)} = {X (t.5), X (4,5,),.... X (t;.s,)} constitutes a random variable.

34
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o At any given time instant, the value of a stochastic process
1s a random variable indexed by the parameter . We
denote such a process by X(¢).

o In general, the parameter ¢ 1s continuous, whereas X may
be either continuous or discrete, depending on the
characteristics of the source that generates the stochastic
process.

o The noise voltage generated by a single resistor or a single
information source represents a single realization of the
stochastic process. It 1s called a sample function.

35
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The set of all possible sample functions constitutes an
ensemble of sample functions or, equivalently, the
stochastic process X(1).

In general, the number of sample functions 1n the
ensemble 1s assumed to be extremely large; often it 1s
infinite.

Having defined a stochastic process X(#) as an ensemble of
sample functions, we may consider the values of the
process at any set of time nstants ¢,>¢,>1;,>...>¢,, where n
1s any positive integer.

In general, the random variables X . = X (tl. ) ,i=12,....n, are

characterized statistically by their joint PDF f, (x X X )

tl, t2,..., tn

36
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o Stationary stochastic processes
o Consider another set of n random variables X, ,, = X (¢, +1),

i =1,2,...,n, where t 1s an arbitrary time shift. These random

variables are characterized by the joint PDF £, (xw s X, e Xy )
o The joint PDFs of the random variables X, and X, ,,,i=12,....n,

may or may not be identical. When they are identical, i.e., when

fX( t19 t2 ) fX( t1+t9 t2+t9 9xtn+t)

for all # and all », 1t 1s said to be stationary 1n the strict sense(SSS).

o When the joint PDFs are different, the stochastic process is
non-stationary.

37
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Averages for a stochastic process are called ensemble averages.
The nth moment of the random variable X, is defined as:

E(x])=" xfy(x,)dx,

i

In general, the value of the nth moment will depend on the

time instant ¢, if the PDF of X, depends on ¢,.

When the process 1s stationary, 1, (xw) = f, (xti ) for all 7.

Therefore, the PDF 1s independent of time, and, as a

consequence, the nth moment 1s independent of time.

38



5.5 Random Processes

o Two random variables: X, = X (¢,),i=1,2.
o The correlation 1s measured by the joint moment:

(X’l)){fz) I LO tzfX( X, s ,2)dx dx,

o Since this joint moment depends on the time 1nstants t, and
1, 1t 1s denoted by R (7, 1,).

o Ry(# t,) 1s called the auto-correlation function of the
stochastic process.

o For a stationary stochastic process, the joint moment is:
E(le Xr )=Ry(1,,8,) =Ry (t, —1,) = R (7)

° Ry(-0)=E(X, X,,)=E(X, X )=EX, X, )=R(7)

L+t

o Average power in the process X(7): R (0)=E(X?).

39
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o Wide-sense stationary (WSS)

o A wide-sense stationary process has the property that the
mean value of the process 1s independent of time (a

constant) and where the autocorrelation function satisfies
the condition that R (7,,7,)=R (#,-1,).

o Wide-sense stationarity is a less stringent condition than
strict-sense stationarity.

40



5.5 Random Processes

o Auto-covariance function

o The auto-covariance function of a stochastic process is
defined as:

Cov(X,.X, )= E{[X, -m(1) ][ X, -m(1,)]}

=R, (t,,t,)—m(t,)m(t,)
o When the process 1s stationary, the auto-covariance
function simplifies to:

COV(th »th) =Cy(t,—1,)=Cy(7) =Ry (7) -m’
o For a Gaussian random process, higher-order moments can
be expressed 1n terms of first and second moments.

Consequently, a Gaussian random process 1s completely
characterized by its first two moments.

41
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o Consider a random process X(¢). We define the mean of the
process X(¢) as the expectation of the random variable obtained by
observing the process at some time #, as shown by

e () =E[X()]=] xfy (x)dx (5.57)

o A random process 1s said to be stationary to first order 1f the
distribution function (and therefore density function) of X(#) does
not vary with time.

Sy (%)= Sy, (x) forallt, andt, — u, (t)=u, forallz (5.59)

o The mean of the random process 1s a constant.

o The variance of such a process is also constant.

42
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o We define the autocorrelation function of the process X(¢) as the
expectation of the product of two random variables X(¢,) and X(2,).

R (tl,tz) = E[X(tl)X(tz )]

= _E; f; x1x2fX(tl)X(t2) (xlaxz )dxldxz (5'60)

o We say a random process X(?) 1s stationary to second order 1f the
joint distribution £}, (%, x,) depends on the difference between
the observation t1me tl and L,.

Ry (t,t,)=R,(t,—1) foralls and¢, (5.61)

o The autocovariance function of a stationary random process X(?) 1s
written as

Cy(1,1,) = E[(X(tl)—,uX)(X(tz)—,uX)] =R, (t,—1,)— 1> (5.62)

43
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o For convenience of notation, we redefine the autocorrelation
function of a stationary process X(¢) as

R, (7)=E| X(t+7)X(t)] foralls (5.63)

o This autocorrelation function has several important properties:
1. R, (0)=E[ X*(r)| (5.64)

2. Ry (7)=R,(-7) (5.65)

3 ) (5.67)

o Proof of (5.64) can be obtained from (5.63) by putting 7 = 0.

44



B.6 Mean, Correlation and Covariance Functions ;!

o Proof of (5.65):

Ry(r)=E[ X (t+7)X (1) |=E| X () X (t+7)|=R, (-7)

o Proof of (5.67):

E| (X (1+7) X (1) |20

—E| X (t+7) |[£2E[ X (t+7) X (1) |[+E| X* (1) |20
— 2R, (0)£2R,(7)20

R (0)<R, (1)< R, (0)

= [Ry (7)| <Ry (0)

45
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o The physical significance of the autocorrelation function R (7) 1s that
it provides a means of describing the “interdependence” of two

random variables obtained by observing a random process
X(?) at times 7 seconds apart.

Ry(7) Slowly fluctuating
random process

Rapidly fluctuating
random process

46
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5.6 Mean, Correlation and Covariance Functions

o Example 5.7 Sinusoidal Signal with Random Phase.

o Consider a sinusoidal signal with random phase:

-

|
X(t)=Acos(27 f,t+0O) f®(9)=<ﬂ’ —1<0<rx
- | 0, elsewhere

R, (r) — E_X(t+r)X(t)}
=E %2005(47zfct+27zfcz'+2®)}+A72E[COS(2”ﬁT)]

A? ox 1 y
== _[_ﬂ 272_COS(47Z-fCt+2ﬂféfi;(%9)d9+7(‘:05(27[bfcf)
A )

=—cos(2 Q
> (27 f.7) VN AN

1
Je
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o Averages for joint stochastic processes

o Let X(¢) and Y(¥) denote two stochastic processes and let
X, =X(1), i=.1,2,...,n, ?’t}EY(t ), J=1,2,...,m, represent the
random variables at times ¢,>7,>¢,>...>¢,, and
t’' >t >t’>.. >t , respectively. The two processes are
characterized statistically by their joint PDF:

Iy (xt1 Xy, 5eees Xy V5 Y eV, )

o The cross-correlation function of X(¢) and Y(¢), denoted by
R (#1,5,), 1s defined as the joint moment:

R, (t,t)=EX, Y)=[ [ x . fi(x,,3,)dxdy,

o The cross-covariance 1s:

COV(th > Ytz ) = ny (t),1,)—m, (tl)my ()

48
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o Averages for joint stochastic processes

o When the process are jointly and individually stationary, we
have R, (7,,1,)=R,(#,-1,), and p, (#,,,)= W, (¢,-1,):

R, (-7)=E(X, ) = E(X Y) E(YX =R, (7)

4 t1+2'

o The stochastic processes X(7) and Y(¢) are said to be
statistically independent 1f and only if :

fXY( 2 fz sz 9y y >° ,y ) fX( 2 zz ’xfn)fY(yti’yté’""yt;n)

for all choices of ¢, and #’; and for all positive integers n and m.

o The processes are said to be uncorrelated 1f

0

ny (tl ’ tZ) = E(th )E(Yt2 ) — COV(th ’ )Itz )
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o Example 5.9 Quadrature-Modulated Processes

o Consider a pair of quadrature-modulated processes X;(¢) and X,(¢):
X, (t)=X(t)cos(2nf,t+O)
X,(t)=X(t)sin(27 f,t + ©O)

_Xl(t)X (t-7)]

X (1)X(t—7)cos(27f.t+@)sin(27 [t —27 [ +O) ]

X()X(t-7)] E[cos(2ﬂfct +O)sin (27 ft -2 f,r + @)]

)

RX T E[sm 47zft 27zfr+2®) SID(ZWfT)}

_ —%RX (r)sin(22/7)  R,(0)=E[X,(£)X,(1)]=0
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R —
o Ergodic Processes

o In many instances, it 1s difficult or impossible to observe all sample
functions of a random process at a given time.

o It 1s often more convenient to observe a single sample function for a
long period of time.

o For a sample function x(7), the time average of the mean value over
an observation period 2T is1

Hr 27 -
o For many stochastic processes of interest in communications, the
time averages and ensemble averages are equal, a property known as
ergodicity.

T

x(t)dt (5.84)

o This property implies that whenever an ensemble average is required,

we may estimate it by using a time average.
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5.7 Transmission of a Random Process Through
a Linear Filter f;
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o Suppose that a random process X(¢) 1s applied as input to hnear
time-invariant filter of impulse response 4(¢), producing a new
random process Y(¢) at the filter output.

Impulse
X(t) ==~ response —= Y(1)
h(t)

o Assume that X(¢) 1s a wide-sense stationary random process.
o The mean of the output random process Y(¢) is given by

(1) =E[Y ()] =E| [ (7)) X (t-7,)d7, |
ZJ-OO h(z'1 )E[X(t—z'l)]a’r1

—j ,uX t Tl)dZ' (5.86)
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o When the input random process X(¢) 1s wide-sense stationary, the
mean [, (t) 1s a constant 4, then mean £, (t) 1s also a constant £, .

(1) = iy [ h(e e = g H(0)  (5.87)
where H(0) 1s the zero-frequency (dc) response of the system.

o The autocorrelation function of the output random process Y(¥) 1s
given by:

Ry () =E[ ¥ (1) ()] =E| [ (5) X (=7 )d= | h(r,) X (u-,)d7, |

= ["drn(z,)[” dr,n(r,) E[Xr )X (u-1,)]

=.._Oodz'1h(rl) drzh(rz) (t T, U — r)
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5.7 Transmission of a Random Process Through /.(
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o When the mnput X(7) 1s a wide-sense stationary random process, the

autocorrelation function of X(7) 1s only a function of the difference
between the observation times:

=[" [ h(@)h(e)R, (-5 + e )izdz,  (5.90)

o If the input to a stable linear time-invariant filter 1s a wide-sense
stationary random process, then the output of the filter 1s also a
wide-sense stationary random process.
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5.8 Power Spectral Density %@5
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o The Fourier transform of the autocorrelation function R (7) 1s called
the power spectral density S( f) of the random process

X(b).

j R, exp j272'f2')d2' (5.91)

I Sy eXp ]27sz)df (5.92)

o Equations (5.91) and (5.92) are basic relations in the theory of
spectral analysis of random processes, and together they constitute
what are usually called the Einstein-Wiener-Khintchine relations.
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5.8 Power Spectral Density ez
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o Properties of the Power Spectral Density
o Property 1: SX(()):_[_OO R, (7)dr (5.93)

o Proof: Let f=0 in Eq. (5.91)
o Property 2: E[Xz(t)] :j_iSX (f)df (5.94)

o Proof: Let 7 =0 in Eq. (5.92) and note that R (0)=E[X?(?)].
o Property3: S, (/)20 forallf (5.95)

o Property4: S, (—f)=S, (/) (5.96)
o Proof: From (5.91)

j R, exp ]27zf2') . ro RX(T)eXP(_jzﬂfT)dT:Sx(f)

RX<T):RX(—Z') —o0
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Proof of Eq. (5.95) %

o It can be shown that (see eq. 5.106) SY(f):SX(f)‘H(f)‘2
j S eXp ]27zfr df = j Sy )‘H(f)‘zexp(j%zfr)df

R, (0) [ } j Sy df>0 forany‘H ‘
(5 64)
o Suppose we let |[H( f)|*=1 for any arbltrarlly small interval £, < f<f,,

and H( f)=0 outside this interval. Then, we have:
f
Sy ( f ) df >0

This 1s possible if an only if §,( /)=0 for all /.

o Conclusion: S /)>0 for all /.
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o Example 5.10 Sinusoidal Signal with Random Phase

o Consider the random process X(¢)=Acos(2nf, t+®), where O 1s a
uniformly distributed random variable over the interval (-7, 7).

o The autocorrelation function of this random process 1s given in

E le 5.7: i
xample 5.7 R, (T) :A?cos(Zﬂch) (5.74)

o Taking the Fourier transform of both sides of this relation:

SX(f)zAT[a(f—fc)w(fﬂg)] (5.97)

2
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5.8 Power Spectral Density

o Example 5.12 Mixing of a Random Process with a
Sinusoidal Process

o A situation that often arises in practice 1s that of mixing (i.e.,
multiplication) of a WSS random process X(#) with a sinusoidal
signal cos(2nf, +0), where the phase ® 1s a random variable that
1s uniformly distributed over the interval (0,2m).

o Determining the power spectral density of the random process Y(¢)
defined by:

Y(f)=X(t)cos(27 1t +O) (5.101)

o We note that random variable ® is independent of X(7) .
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o Example 5.12 Mixing of a Random Process with a
Sinusoidal Process (continued)

o The autocorrelation function of ¥(¢) is given by:
R, () =E[¥(t+7)Y(1)]
=E| X (t+7)cos(27f.t+27f.r+O) X (t)cos(27 [t +O) |
= :X(t + Z')X(l‘)] E[cos(27zfct +27 f,1+@)cos(27 [t + @)]

=—R,(7) E[cos(27zfcr) +cos(4z fit+2n fr+ 2®)}
1

= ERX (7)cos(27f,7) ﬁ

Fourier transform

S, () =4[ Su(F=£)+Sc (£ +£)] (5.103)
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o Relation among the Power Spectral Densities of the Input and
Output Random Processes

o Let Sy f) denote the power spectral density of the output random process Y(?)
obtained by passing the random process through a linear filter of transfer
function H( f).

5,(/)={" R (e)e > ar )= MM R (s, (590
ol U R Ry(r—1,+1,)e " drdr,dr
ﬁLet T—17,+7, =71,
=] 1L LA R, (z,)e ™" ) dr dr,dx,

=" h(t)e ’2”frldr1jw h(rz)ejz”ffzdrzj:RX(ro)e_ﬂ”f“’dro

o —00

=H(N)VH (1)Sc () =[H(S) 5. (f) (5.106)
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5.10 Noise %
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o The sources of noise may be external to the system (e.g.,

atmospheric noise, galactic noise, man-made noise), or internal to

the system.

o The second category includes an important type of noise that arises
from spontaneous fluctuations of current or voltage in electrical
circuits. This type of noise represents a basic limitation on the
transmission or detection of signals in communication systems
involving the use of electronic devices.

o The two most common examples of spontaneous fluctuations in
electrical circuits are shot noise and thermal noise.
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o Thermal Noise

o Thermal noise 1s the name given to the electrical noise arising
from the random motion of electrons in a conductor.

o The mean-square value of the thermal noise voltage V',
appearing across the terminals of a resistor, measured 1n a
bandwidth of Af Hertz, 1s given by:

E|V | =4kTRAS volts®

k : Boltzmann's constant=1.38 x10-23 joules per degree Kelvin.
T : Absolute temperature in degrees Kelvin.
R: The resistance in ohms.
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o White Noise

o The noise analysis 1s customarily based on an 1dealized form of
noise called white noise, the power spectral density of which 1s
independent of the operating frequency.

o White 1s used in the sense that white light contains equal
amount of all frequencies within the visible band of
electromagnetic radiation.

o We express the power spectral density of white noise, with a
sample function denoted by w(¥), as

N, .
SW(f)ZT 7

N, =kT, ; f

The dimensions of N, are in watts per Hertz, k£ 1s Boltzmann’s

constant and 7, 1s the equivalent noise temperature of the receiver.
64
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o White Noise

o The equivalent noise temperature of a system 1s defined as the
temperature at which a noisy resistor has to be maintained such
that, by connecting the resistor to the input of a noiseless
version of the system, it produces the same available noise
power at the output of the system as that produced by all the
sources of noise in the actual system.

o The autocorrelation function is the inverse Fourier transform of
the power spectral density: e

N o 5t
R, (1)= 705(1)

o Any two different samples of white noise, no matter how
closely together 1n time they are taken, are uncorrelated.

o If the white noise w(¥) 1s also Gaussian, then the two samples

are statistically independent.
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o Example 5.14 Ideal Low-Pass Filtered White Noise

o Suppose that a white Gaussian noise w(?) of zero mean and
power spectral density N,/2 1s applied to an i1deal low-pass filter
of bandwidth B and passband amplitude response of one.

o The power spectral density of the noise n(z) 1s

Sy(f)

KNO

SN(f)=<7’ -B< f<B
0

/> B

o The autocorrelation function of n(?) 1s

)= Stexp(j2nf)dr / \
N N,

=N,B smc(ZBr) 75
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