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4.1 Introduction
◊ In this chapter, we study a second family of continuous-wave(CW)

modulation systems, namely, angle modulation, in which the angle 
of the carrier wave is varied according to the baseband signals.

◊ In this method of modulation, the amplitude of the carrier wave is 
maintained constant.

◊ There are two common forms of angle modulation, namely, phase 
modulation and frequency modulation.

◊ An important feature of angle modulation is that it can provide better 
discrimination against noise and interference than amplitude 
modulation.
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4.1 Introduction
◊ However, this improvement in performance is achieved at the 

expense of increased transmission bandwidth.

◊ Moreover, the improvement in the noise performance with angle 
modulation is achieved at the expense of increased system 
complexity in both the transmitter and receiver.

◊ Such a trade-off is not possible with amplitude modulation.
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4.2 Basic Definitions
◊ Let θi(t) denote the angle of a modulated sinusoidal carrier at time 

t; it is assumed to be a function of the information–bearing signal 
or message signal.

◊ We express the resulting angle-modulated wave as 
(4.1)

where Ac is the carrier amplitude.
◊ The average frequency in Hertz over an interval from t to t+Δt is 

given by
(4.2)

◊ The instantaneous frequency of the angle-modulated signal s(t):
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4.2 Basic Definitions
◊ For an unmodulated carrier, the angle θi(t) is given by

and corresponding phasor rotates with  a constant angular velocity 
equal to 2πfc. The constant is the value of θi(t) at t=0.

◊ There are an infinite number of ways in which the angle θi(t) may 
be varied in some manner with the message (baseband) signal.

◊ We shall consider only two commonly used methods, phase 
modulation and frequency modulation.

( ) 2i c ct f tθ π φ= +

cφ
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◊ Phase modulation (PM) is that form of angle modulation in which 
the instantaneous angle θi(t) is varied linearly with the message 
signal as shown by

(4.4)
The term 2πfct represents the angle of the unmodulated carrier; kp
represents the phase sensitivity of the modulator, expressed in 
radians per volt on the assumption that m(t) is a voltage waveform.

For convenience, we have assumed in Eq. (4.4) that the angle of the 
unmodulated carrier is zero at t=0. The phase-modulated signal s(t)
is thus described in the time domain by

(4.5)

4.2 Basic Definitions

( ) ( )2i c pt f t k m tθ π= +

( ) ( )cos 2c c ps t A f t k m tπ = + 
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( ) ( )
0

cos 2 2
t

c c fs t A f t k m dπ π τ τ = +  ∫

4.2 Basic Definitions
◊ Frequency modulation (FM) is that form of angle modulation in 

which the instantaneous frequency fi(t) is varied linearly with the 
message signal m(t), as shown by

(4.6)
fc : The frequency of the unmodulated carrier
kf : The frequency sensitivity of the modulator (Hertz per volt)
Integrating Eq. (4.6) with respect to time and multiplying the result 
by 2π, we get

(4.7)
where, for convenience, we have assumed that the angle of the 
unmodulated carrier wave is zero at t=0. The frequency-modulated 
signal is therefore described in the time domain by

(4.8)

( ) ( )i c ff t f k m t= +

( ) ( )
0

2 2
t

i c ft f t k m dθ π π τ τ= + ∫
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4.2 Basic Definitions
a) Carrier wave

b) Sinusoidal modulating signal

c) Amplitude-modulated signal

d) Phase-modulated signal

e) Frequency-modulated signal
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Properties of Angle-Modulated Waves

◊ Property 1: Constancy of Transmitted Power:
◊ From both Eqs. (4.4) and (4.7), we readily see that the 

amplitude of PM and FM waves is maintained at a constant 
value equal to the carrier amplitude Ac for all time t, 
irrespective of the sensitivity factors kp and kf . 

◊ Consequently, the average transmitted power of angle-
modulated waves is a constant, as shown by 

(4.9)
where it is assumed that the load resistance is 1 ohm.

1 2
2

P Aav c=

2VP
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 
= 

 
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◊ Property 2: Nonlinearity of the Modulation Process
◊ Both PM and FM waves violate the principle of superposition. 
◊ For example, the message signal m(t) is made up of two 

different components, m1(t) and m2(t):
◊ Let s(t), s1(t), and s2(t) denote the PM waves produced by m(t), 

m1(t), and m2(t) in accordance with Eq. (4.4), respectively. We 
may express these PM waves as follows:

◊ Frequency modulation offers superior noise performance 
compare to amplitude modulation,

( ) ( ) ( )1 2m t m t m t= +

( ) ( ) ( )( )1 2cos 2c c ps t A f t k m t m tπ = + + 

( ) ( )2 2cos 2c c ps t A f t k m tπ = + 

( ) ( )1 1cos 2c c ps t A f t k m tπ = +  ( ) ( ) ( )1 2s t s t s t≠ +

( ) ( ) ( )1 2m t m t m t= +

Properties of Angle-Modulated Waves

( ) ( ) ( )2    4.4i c pt f t k m tθ π= +
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◊ Property 3: Irregularity of Zero-Crossings
◊ Zero-crossing are defined as the instants of time at which a 

waveform changes its amplitude from  positive to negative 
value or the other way around.

◊ The zero-crossings of a PM or FM wave no longer have a 
perfect regularity in their spacing across the time-scale.

◊ The irregularity of zero-crossings in angle-modulated waves is 
attributed to the nonlinear character of the modulation process.

Properties of Angle-Modulated Waves
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◊ Property 4: Visualization Difficulty of Message Waveform
◊ In AM, we see the message waveform as the envelope of the 

modulated wave, provided the percentage modulation is less than 
100 percent.
(AM: The percentage modulation over 100 percent→phase 
reversal→distortion)

◊ This is not so in angle modulation, as illustrated by the 
corresponding waveform of Figures 4.1d and 4.1e for PM and 
FM, respectively.

Properties of Angle-Modulated Waves
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◊ Property 5-Trade-OFF of Increased Transmission 
Bandwidth for Improved Noise Performance
◊ An important advantage of angle modulation over amplitude 

modulation is the realization of improved noise performance.

◊ This advantage is attributed to the fact that the transmission of a 
message signal by modulating the angle of a sinusoidal carrier 
wave is less sensitive to the presence of additive noise than 
transmission by modulating the amplitude of the carrier.

◊ The improvement in noise performance is achieved at the 
expense of a corresponding increase in the transmission 
bandwidth requirement of angle modulation.

Properties of Angle-Modulated Waves
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◊ Property 5-Trade-OFF of Increased Transmission 
Bandwidth for Improved Noise Performance
◊ The use of angle modulation offers the possibility of exchanging 

an increase in the transmission bandwidth for an improvement in 
noise performance.

◊ Such a trade-off is not possible with amplitude modulation since 
the transmission bandwidth of an amplitude-modulated wave is 
fixed somewhere between the message bandwidth W and 2W, 
depending on the type of modulation employed.

Properties of Angle-Modulated Waves
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◊ Consider a modulating wave m(t) that increases linearly with time t, 
starting at t=0, as shown by

where a is the slope parameter (see Figure 4.2a). In what
follows, we study the zero-crossings of the PM and FM waves
produced by m(t) for the following set of parameters:

( )
, 0
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Example 4.1 Zero-Crossings
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Fig. 4.2 Starting at time t = 0, the figure displays (a) linearly increasing message signal m(t), 
(b)phase-modulated wave, and (c) frequency-modulated wave.

Example 4.1 Zero-Crossings
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◊ Phase Modulation:
◊ Phase-sensitivity factor kp=π/2 radians/volt. Applying Eq. (4.5) 

to the given m(t) yields the PM wave 

which is plotted in Figure 4.2b for Ac=1 volt.
◊ Let tn denote the instant of time at which the PM wave 

experiences a zero crossing; this occurs whenever the angle of 
the PM wave is an odd multiple of π/2:
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Example 4.1 Zero-Crossings

( ) ( ) ( )cos 2   4.5c c ps t A f t k m tπ = + 
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◊ Frequency Modulation:
◊ Frequency-sensitivity factor, kf =1 Hz/volt. Applying Eq. (4.8) 

yields the FM wave

which is plotted in Figure 4.2c.
◊ Invoking the definition of a zero-crossing, we can obtain:

( ) ( )
( )

2cos 2 , 0

cos 2 , 0
c c f

c c

A f t k at t
s t

A f t t

π π

π

 + ≥= 
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

( )1= 1 9 16 ,  0,1,2,  
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Example 4.1 Zero-Crossings

( ) ( ) ( )
0

cos 2 2   4.8
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c c fs t A f t k m dπ π τ τ = +  ∫
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◊ Comparing the zero-crossing results derived for PM and FM waves, 
we may make the following observations once the linear modulating 
wave begins to act on the sinusoidal carrier wave:

1. For PM, regularity of the zero-crossings is maintained; the 
instantaneous frequency changes from the unmodulated value of 
fc=1/4 Hz to the new constant value of

2. For FM, the zero-crossings assume an irregular form; as expected, 
the instantaneous frequency increases linearly with time t.

( )/ 2 0.5Hzc pf k a π+ =

Example 4.1 Zero-Crossings
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4.2 Basic Definitions
◊ Comparing Eq. (4.5 ) with (4.8) reveals that an FM signal may be 

regarded as a PM signal in which the modulating wave is
in place of m(t). 

◊ The FM signal can be generated by first integrating m(t) and then 
using the result as the input to a phase modulator, as in Figure 4.3a.

◊ Conversely, a PM signal can be generated by first differentiating 
m(t) and then using the result as the input to a frequency modulator, 
as in Figure 4.3b.

◊ We may thus deduce all the properties of PM signals from those of 
FM signals and vice versa. Henceforth, we concentrate our 
attention on FM signals.

( )
0

t
m dτ τ∫

( ) ( )cos 2   (4.5)c c ps t A f t k m tπ = + 

( ) ( )
0

cos 2 2   (4.8)
t

c c fs t A f t k m dπ π τ τ = +  ∫
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Figure 4.3 Illustrating the relationship between frequency modulation and phase modulation. 
(a) Scheme for generating an FM wave by using a phase modulator, (b) scheme for 
generating a PM wave by using a frequency modulator.
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4.2 Basic Definitions
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4.3 Frequency Modulation

◊ The FM signal s(t) define by Eq. (4.8) is a nonlinear function of the 
modulating signal m(t), which makes frequency modulation a 
nonlinear modulation process.

◊ How then can we tackle the spectral analysis of FM signal? We 
propose to provide an empirical answer to this important question by 
proceeding in the same manner as with AM modulation, that is, we 
consider the simplest case possible, namely, single-tone modulation.

◊ Consider then a sinusoidal modulating signal define by

(4.10)( ) ( )cos 2m mm t A f tπ=

( ) ( )
0

cos 2 2   (4.8)
t

c c fs t A f t k m dπ π τ τ = +  ∫
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◊ The instantaneous frequency of the resulting FM signal is

(4.11)
(4.12)

◊ The quantity Δf is called the frequency deviation, representing the 
maximum departure of the instantaneous frequency of the FM signal from 
the carrier frequency fc.

◊ A fundamental characteristic of an FM signal is that the frequency 
deviation Δf is proportional to the amplitude of the modulating signal and is 
independent of the modulating frequency.

◊ Using Eq. (4.11), the angle θi(t) of the FM signal is obtained as

◊ The ratio of the frequency deviation Δf to the modulation 
frequency fm is commonly called the modulation index of the FM 
signal.

( ) ( ) ( )cos 2 cos 2i c f m m c mf t f k A f t f f f tπ π= + = + ∆

f mf k A∆ =

( ) ( ) ( )
0

2 2 sin 2
t

i i c m
m

ft f t dt f t f t
f

θ π π π∆
= = +∫

4.3 Frequency Modulation
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◊ The modulation index is denoted by β:

◊ The parameter β represents the phase deviation of the FM signal, i.e. 
the maximum departure of the angle θi(t) from the angle 2πfct of the 
unmodulated carrier. β is measured in radians.

◊ The FM signal itself is given by

(4.16)
Depending on the value of the modulation index β, we may 
distinguish two cases of frequency modulation:
◊ Narrow-band FM, for which β is small compared to one radian.
◊ Wide-band FM, for which β is large compared to one radian.

m

f
f

β ∆
=

( ) ( )2 sin 2i c mt f t f tθ π β π= +

( ) ( )cos 2 sin 2c c ms t A f t f tπ β π = + 

4.3 Frequency Modulation
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◊ Narrow-band frequency modulation
◊ Consider Eq. (4.16), which defines an FM signals resulting 

form the use of sinusoidal modulating signal. Expanding this 
relation, we get

◊ Assuming that the modulation index β is small compared to 
one radian, we may use the following two approximations:

( ) ( ) ( ) ( ) ( ) ( )cos 2 cos sin 2 sin 2 sin sin 2   4.17c c m c c ms t A f t f t A f t f tπ β π π β π   = −   

( ) ( )sin sin 2 sin 2m mf t f tβ π β π   ( )cos sin 2 1mf tβ π   

( ) ( ) ( ) ( ) ( )cos 2 sin 2 sin 2   4.18c c c c ms t A f t A f t f tπ β π π−

4.3 Frequency Modulation

( ) ( ) ( ) ( ){ } ( )1cos 2 cos 2 cos 2   4.19
2c c c c m c ms t A f t A f f t f f tπ β π π   + + − −   

( ) ( )1sin sin cos cos
2

α β α β α β = − − + 
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◊ This expression is somewhat similar to the corresponding one 
defining an AM signal (from Example 3.1):

where μ is the modulation factor of the AM signal.

◊ Compare Eqs. (4.19) and (4.20), we see that the basic 
difference between an AM signal and a narrow-band FM 
signal is that the algebraic sign of the lower side frequency in 
the narrow-band FM is reversed.

◊ Thus, a narrow-band FM signal requires essentially the same 
transmission bandwidth (i.e. 2fm) as the AM signal.

( ) ( ) ( ) ( ){ } ( )1cos 2 cos 2 cos 2   4.20
2AM c c c c m c ms t A f t A f f t f f tπ µ π π   = + + + −   

4.3 Frequency Modulation
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◊ Wide-band frequency modulation
◊ The following studies the spectrum of the single-tone FM signal 

of Eq. (4.16) for an arbitrary value of the modulation index β.

◊ By using the complex representation of band-pass signals 
described in Chapter 2: (Carrier frequency fc compared to the 
bandwidth of the FM signal is large enough)

( ) ( )( ) ( )
( ) ( )

Re exp 2 sin 2       4.21

Re exp 2

c c m

c

s t A j f t j f t

s t j f t

π β π

π

 = + 
 =  

( ) ( )where  exp sin periodic function of2  c ms t A j f t tβ π →=  

( ) ( ) ( )cos 2 sin 2     4.16c c ms t A f t f tπ β π = + 

4.3 Frequency Modulation
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◊ Wide-band frequency modulation
◊ We may therefore expend        in the form of complex Fourier 

series as follows:
(4.23)

(4.24)
(4.26)

(4.28)

(4.31)

( )s t
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= ∑
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−

−
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 = − 

∫

∫



( )exp sin
2

c
n

Ac j x nx dx
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π
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π −
 = − ∫

( ) ( )1 exp sin
2nJ j x nx dx

π

π
β β

π −
 = − ∫( )n c nc A J β=

2 mx f tπ=

( ) ( ) ( )Re exp 2c n c m
n

s t A J j f nf tβ π
∞

=−∞

  = ⋅ +   
∑

4.3 Frequency Modulation

nth order Bessel function of the first kind.
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◊ Taking the Fourier transforms of both sides of Eq. (4.31)
(4.32)

◊ In Figure 4.6 we have plotted the Bessel function Jn(β) versus the 
modulation index β for different positive integer values of n. 

FIGURE4.6  Plots of Bessel functions of the first kind.

( ) ( ) ( ) ( )
2

c
n c m c m

n

AS f J f f nf f f nfβ δ δ
∞

=−∞

 = − − + + + ∑

4.3 Frequency Modulation
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◊ We can develop further insight into the behavior of the Bessel 
function Jn(β) by making use of the following properties:

1. For n even, we have Jn(β)=J-n(β); on the other hand, for n odd, we 
have Jn(β)=-J-n(β). That is 

(4.33)
2. For small values of the modulation index β, we have

(4.34)

3. 
(4.35)

( ) ( ) ( )1   for all n
n nJ J nβ β−= −

( )

( )

( )

0

1

1
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0, 2n

J

J

J n

β
ββ

β


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

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





( )2 1n
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J β
∞

=−∞

=∑

4.3 Frequency Modulation
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◊ Thus, using Eqs. (4.32) through (4.35) and the curves of Figure 4.6, 
we may make the following observations:

1. The spectrum of an FM signal contains a carrier component (n=0) 
and an infinite set of side frequencies located symmetrically on 
either side of the carrier at frequency separations of fm, 2fm, 3fm, ….
(An AM system gives rise to only one pair of side frequencies.)

2. For the special case of β small compared with unity, only the Bessel 
coefficients J0(β) and J1(β) have significant values (see 4.34), so that 
the FM signal is effectively composed of a carrier and a single pair 
of side frequencies at fc ± fm.
(This situation corresponds to the special case of narrowband FM 
that was considered previously)

4.3 Frequency Modulation
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3. The amplitude of the carrier component of an FM signal is dependent 
on the modulation index β. The physical explanation for this 
property is that the envelope of an FM signal is constant, so that the 
average power of such a signal developed across a 1–ohm resistor is 
also constant, as shown by

(4.36)
21     (Using (4.31) and (4.35))

2 cP A=

4.3 Frequency Modulation
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◊ In this example, we wish to investigate the ways in which variations 
in the amplitude and frequency of a sinusoidal modulating signal 
affect the spectrum of the FM signal.

◊ Consider first the case when the frequency of the modulating signal 
is fixed, but its amplitude is varied, producing a corresponding 
variation in the frequency deviation Δf.

◊ Consider next the case when the amplitude of the modulating signal 
is fixed; that is, the frequency deviation Δf is maintained constant, 
and the modulation frequency fm is varied.

EXAMPLE 4.3 Spectra of FM Signals
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FIGURE4.7 Discrete amplitude spectra 
of an FM signal, normalized with 
respect to the carrier amplitude, for the 
case of sinusoidal modulation of fixed 
frequency and varying amplitude. Only 
the spectra for positive frequencies are 
shown.

EXAMPLE 4.3 Spectra of FM Signals
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◊ We have an increasing number of spectral lines crowding into the 
fixed frequency interval fc-Δf<| f |<fc+ Δf .

◊ When β approaches infinity, the bandwidth of the FM wave 
approaches the limiting value of 2Δf, which is an important point 
to keep in mind.

FIGURE 4.8 Discrete amplitude spectra of 
an FM signal, normalized with respect to the 
carrier amplitude, for the case of sinusoidal 
modulation of varying frequency and fixed 
amplitude. Only the spectra for positive 
frequencies are shown.

EXAMPLE 4.3 Spectra of FM Signals
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Transmission Bandwidth of FM Signals

◊ In theory, an FM signal contains an infinite number of side 
frequencies so that the bandwidth required to transmit such a signal 
is similarly infinite in extent.

◊ In practice, however, we find that the FM signal is effectively 
limited to a finite number of significant side frequencies compatible 
with a specified amount of distortion. 

◊ Consider the case of an FM signal generated by a single-tone
modulating wave of frequency fm.
◊ In such an FM signal, the side frequencies that are separated 

from the carrier frequency fc by an amount greater than the 
frequency deviation Δf decrease rapidly toward zero, so that the 
bandwidth always exceeds the total frequency excursion, but 
nevertheless is limited.
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◊ We may thus define an approximate rule for the transmission 
bandwidth of an FM signal generated by a single-tone 
modulating signal of frequency fm as follows:

(4.38)
This empirical relation is known as Carson’s rule.

◊ For a more accurate assessment of the bandwidth requirement of 
an FM signal, we may thus define the transmission bandwidth of 
an FM wave as the separation between the two frequencies 
beyond which none of the side frequencies is greater than 1% of 
the carrier amplitude obtained when the modulation is removed. 

12 2 2 1T mB f f f
β

 
∆ + = ∆ + 

 


Large 2
Small 2

T

T m

B f
B f

β
β
→ ∆
→





Transmission Bandwidth of FM Signals
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4.4 Phase-Locked Loop

◊ The phase-locked loop (PLL) is a negative feedback system, the 
operation of which is closely linked to frequency modulation.

◊ It can be used for synchronization, frequency division/multiplication, 
frequency modulation, and indirect frequency demodulation.

◊ Basically, the phase-locked loop consists of three major 
components: a multiplier, a loop filter (low-pass filter), and a
voltage-controlled oscillator (VCO) connected together in the form 
of a feedback loop, as in Figure 4.16. 

◊ The VCO is a sinusoidal generator whose frequency is determined 
by a voltage applied to it from an external source.
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FIGURE 4.16 Phase-locked loop.

◊ We assume that initially we have adjusted the VCO so that when the 
control voltage is zero, two conditions are satisfied:

1. The frequency of the VCO in precisely set at the unmodulated carrier 
frequency fc.

2. The VCO output has a 90-degree phase-shift with respect to the 
unmodulated carrier wave.

4.4 Phase-Locked Loop
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◊ Suppose then that the input signal applied to the phase-locked loop 
is an FM signal defined by

(4.59)
where Ac is the carrier amplitude and                                     .

◊ Let the VCO output in the phase-locked loop be defined by

(4.61)
where Av is the amplitude. With a control voltage v(t) applied to a 
VCO input, the angle  is related to v(t) by the integral

(4.62)
where kv is the frequency sensitivity of the VCO, measured in Hertz 
per volt.

( ) ( )1sin 2c cs t A f t tπ φ = + 
( ) ( )1 0

2
t

ft k m dφ π τ τ= ∫

( ) ( )2cos 2π φ = + v cr t A f t t

( )2φ t

( ) ( )2 0
2φ π υ= ∫

t

vt k t dt

4.4 Phase-Locked Loop

(4.60)
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◊ The object of the phase-locked loop is to generate a VCO output r(t) 
that has the same phase angle (except for the fixed difference of 90 
degrees) as the input FM signal s(t).

◊ The time-varying phase angle ψ1(t) characterizing s(t) may be due 
to modulation by a message signal m(t) as in Eq. (4.60), in which 
case we wish to recover ψ1(t) in order to estimate m(t).

◊ In other applications of the phase-locked loop, the time-varying 
phase angle ψ1(t) of the incoming signal s(t) may be an unwanted 
phase shift caused by fluctuations in the communication channel; in 
this latter case, we wish to track ψ1(t) so as to produce a signal with 
the same phase angle for the purpose of coherent detection
(synchronous demodulation).

4.4 Phase-Locked Loop
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Nonlinear Model of the PLL
◊ According to Figure 4.16, the incoming FM signal s(t) and the VCO 

output r(t) are applied to the multiplier, producing two components:
1. A high- frequency component, represented by the double- frequency

term

2. A low- frequency component, represented by the difference-
frequency term

where km is the multiplier gain, measured in volt-1.
◊ The loop filter in the phase-locked loop is a low-pass filter, and its 

response to the high- frequency component will be negligible.

( ) ( )1 2sin 4π φ φ + + m c v ck A A f t t t

( ) ( )1 2sin φ φ − m c vk A A t t
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◊ Therefore, discarding the high-frequency component (i.e., the 
double- frequency term), the input to the loop filter is reduced to

(4.63)
where ψe(t) is the phase error defined by

(4.64)

◊ The loop filter operates on the input e (t) to produce an output v(t) 
defined by the convolution integral

(4.65)
where h(t) is the impulse response of the loop filter.

( ) ( )sinm c ee t k A A tυ φ =  

( ) ( ) ( )

( ) ( )
1 2

1 0
2

e

t

t t t

t k dυ

φ φ φ

φ π υ τ τ

= −

= − ∫

( ) ( ) ( )υ τ τ τ
∞

−∞
= −∫t e h t d

Nonlinear Model of the PLL
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◊ When the phase error ψe(t) is zero, the phase-locked loop is said to 
be in phase-lock. When ψe(t) is at all times small compared with 
one radian, we may use the approximation

(4.68)
which is accurate to within 4 percent for ψe(t) less than 0.5 radians.

◊ We may represent the phase-locked loop by the linearized model 
shown in Figure 4.18a.

Figure 4.18 Models of the phase-locked loop. (a)Linearized model.

Linear Model of the PLL

( ) ( )sin e et tφ φ   
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