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Chapter 2.1 Introduction (&7

o We identify deterministic signals as a class of signals whose
waveforms are defined exactly as functions of time.

o In this chapter we study the mathematical description of such
signals using the Fourier transform that provides the link
between the time-domain and frequency-domain descriptions of
signal.

o Another related issue that we study in this chapter is the
representation of linear time-invariant systems. Filters of
different kinds and certain communication channels are
Important examples of this class of systems.
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Chapter 2.2 The Fourier Transform

o Fourier transform is defined as
G( f):j_oo g(t)exp(—j2x ft)dt

o g(t) denote a nonperiodic deterministic signal.

o J:\/__]_

o variable f denotes frequency and t denotes time.

o Inverse Fourier transform i1s defined as

g(t)=[ G(f)exp(j2r ft)df
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o We have used a lowercase letter to denote the time function and a
uppercase letter to denote the corresponding frequency function. The
functions g(t) and G( f) are said to constitute a Fourier-transform
pair.

o For the Fourier transform of a signal g(t) to exist, it is sufficient, but
not necessary, that g(t) satisfies three sufficient conditions known
collectively as Dirichlet’s conditions:

o The function g(t) is single-valued, with a finite number of
maxima and minima in any finite time interval.

o The function g(t) has finite number of discontinuities in any finite
time interval.

o The function g(t) is absolutely integrable, i.e.

j:\g(t)\dtmo
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Chapter 2.2 The Fourier Transform

o We may safely ignore the question of the existence of the Fourier
transform of a time function when it is an accurately specified
description of a physically realizable signal.

—

o Physical realizability is a sufficient condition for the existence of
a Fourier transform.

Power Signal:0 < P <

(E =)

o Plancherel’s theorem: if a time function g(t) is such that the value
of the energy [~ |g(t)[ dt<oo is defined and finite, then the
Fourier transform G( ) of the function g(t) exists and

Lii‘i.lhi g(t)-[" G(f)exp(j2x ft)df Zdt} - 0.
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o Energy signals: f ‘g (t)‘2 dt <oo; (P =0)




Chapter 2.2 The Fourier Transform

o Notations
o time t measured in second (s)
o frequency f measured in Hertz (Hz)
o angular frequency 5 =2xf (radians per second, rad/s).

o A convenient shorthand notation for the transform relations:
o Fourier transformation

G(f)= F[g(t)} 80 o) py 2
o Inverse Fourier transformation

g(t):F‘l[G(f)} G(/f) P g(1)

where F[ |and F*[ ] play the roles of linear operators.
o Fourier-transform pair g(t)=G(f)
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Chapter 2.2 The Fourier Transform

o Continuous Spectrum

o BY using the Fourier transform operation, a pulse signal g(t) of
finite energy Is expressed as a continuous sum of exponential
functions with frequencies in the interval -co ~ oo, The
amplitude of a component of frequency f is proportional to
G( f), where G( f) is the Fourier transform of g(t).

o At any frequency f, the exponential function exp(j2 =ft) is
weighted by the factor G( f )df , which is the contribution of
G( f) in an infinitesimal interval df centered at the frequency f.

o We may express the function g(t) in terms of the continuous
sum of such infinitesimal components:

g(t)=[ G(f)exp(j2r ft)df
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Chapter 2.2 The Fourier Transform f/“’

o In general, the Fourier transform G( f ) is a complex function of

frequency t G () =[a (1 )|exp[ j6( )]

G( )| is called the continuous amplitude spectrum of g(t)

6(f) is called the continuous phase spectrum of g (t)
o If g(t) is a real-valued function of t, then
o G(-f)=G*(T)
o |G(-f)|=|G*( )| =|G(f)|: an even function of f
o O(-f)=-O(f): an odd function of f
o The spectrum of a real-valued signal exhibits conjugate symmetry.

G( f)=jjog(t)e‘j2”“dt G(—f)=G*(f)=‘G(f)‘exp[—j9(f)]

cr(1-{[ a0 ] [ otgeamacr) SIS st
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Chapter 2.2 The Fourier Transform
o [Example 2.1] Rectangular Pulse

o Define a rectangular function of unit amplitude and unit
duration:

1, —£<t <E
#(0) rect(t) =< 2 .
Real-Valued 0, t|>=
and Symmetric - 2
A
t
t)= Arect| —
g(t) (T)
& ° 3

t

N~

[G()]

A rect(?j = AT sinc( fT) (2.10)
G(f)=[ Aexp(-j2rft)dt

T/2 o

= I_T,ZA(COS(ZE ft) — jsin(27 ft))dt
AT . Sin (272- ft)
Real-Valued B ZAJO cos(2z ft)dt = 2A
and Symmetric

T
2

_4
-

_3
1

2 f .
:AT(sin(nfT)
z(fo Lz s

s ]EATsinc(fT) sinc(4)

:
12

sin(74)
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Chapter 2.2 The Fourier Transform

o sinc function

sinc(4) = |

-0.5 —

o As the pulse duration T Is decreased, the first zero-crossing of the
amplitude spectrum |G( f )| moves up in frequency.

o The relationship between the time-domain and frequency-domain is
an inverse one.

o A pulse, narrow in time, has a significant frequency description over
a wide range of frequencies, and vice versa.
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o [Example 2.2] Exponential Pulse

o A truncated form of a decaying exponential pulse is shown in the
following figure

g(i) g(1)

1.0 1.0

B o e N 0.366

I |
I I
| |
| |
0 1/a -1/a 0

(a) ()
(a)Decaying exponential pulse. (b)Rising exponential pulse.
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Chapter 2.2 The Fourier Transform

o [Example 2.2] Exponential Pulse(cont.)

o Itis convenient to mathematically define the decaying
exponential pulse using the unit step function.

o An unit step function is defined as:

t>0

1
t)=<—, t=0

u() <2
\O t<O0

o Decaying exponential pulse of figure (a) can be expressed as

g(t) =exp(-at)u(t)

15



Chapter 2.2 The Fourier Transform

the Fourier transform of this pulse is
G( f)=j:exp(—at)exp(—j27z ft)dt

_exp[—t(a+j27zf)]
(a+j2ﬂf)

:j:exp[—t(a+ jorf)|dt=

B 1
a+ )2rnf

the Fourier-transform pair for the decaying exponential pulse of
figure (a) is therefore

1

exp(—at)u(t)= AT

16



Chapter 2.2 The Fourier Transform

o [Example 2.2] Exponential Pulse(cont.)
o Rising exponential pulse of Fig. (b)

1
t) =exp(at)u(-t tu(-t) =
9(0)=exp(aul-)  oplatu)
G(f)=| exp(at)exp(-j2x ft)dt
0 _ 1
=._wexp[t(a— j2rt) ] dt= Ty

o The decaying and rising exponential pulses are both
asymmetric functions of time t .

o Their Fourier transforms are therefore complex valued.

o Truncated decaying and rising exponential pulses have the
same amplitude spectrum, but the phase spectrum of the one is
the negative of that of the other.
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. . =2
ourier-transtorm Pairs
%G
>
Time Function Fourier Transform g Glw)
A 1
t T sinc(fT) ar .
rect(;) 08 1. e “u(r) a+ jw a7 o
1
sinc(2Wr) = f 2. 1e™"u() ik o
W rect Z_W (a + jw)
=2
exp(—anu(t), a=>=0 1 3. |t —
a+j2nf il
4. 6 1
exp(—alt)), a>0 *:2—07 "
a + (2=nf) 5.1 21 8(w)
exp(—nt* 2 I
p( ) exp(—nf~) 6. uln mo(w) + —
1= |_I_I Jjw
i = 7 S(w — w,) + 8w+ )]
Tsincz(fT) . COS w,t w[8lw — w, 0+ w,
0, t|=T 8. sin w,! jm[d(w + w,) — 8w — w,)]
o(1) 1 9. cos w,t u(t) il [6(w — w) + 8w+ w)] + s o
1 o(f) 2 w
S — —j : .
o —tol exp(—j2nfio) 10. sin wit u() T80 — @) — 8w + w)] + ———
exp( j2nf.1) =1 2 ’ @, ~ w
1
cos(2nf.t) = I5ff=£Yd E - ar g e
2[ (f—f)+o(f+£)] 1. e sin w, u(r) @+ ja) T
sm(EHfJ) 2_f [b(j _ﬁ) - ()(f +_f,‘” 12. 2B sinc (2B1) I (L)
47B
: o ()
i jnf 13. _r) 7 sinc 7
= . . o
m i sgn() <
u(t) 1(3 o 14. ’ T sinc’ (E)
_ 2 (f) j2nf 0 [t| > 7 2,
e J 1 . n 2 &f) 2n( ol lo| = w,
2 3=iTy) =2 5(.fF Rl PP e P PO
L o 0 r==—00 0
2a
Notes: u(t) = unit step function 16. ¢ Il a’ + w’
d(r) = Dirac delta function N - _ 7
rect(r) = rectangular function 17. k_zjx 8(r — kL) = ;‘ e E7
sgn(r) = signum function 18, o127 o\ 2 e~ 722

sinc(r) = sinc function
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Chapter 2.3 Properties of the Fourier Transform (7~ ==

o Summary of properties of the Fourier transform

Property

Mathematical Description

1. Linearity

ag, (t)+bg, (t)=2aG,(f)+bG,(f),
a and b are constants.

: : f
2. Time scaling g(at) = |;|G( j where a is constant
3. Duality If g(t)==G(f)then G(t)=g(-f)

4. Time shifting

)
g(t—t,) =G(f)exp(—j2rft)

5. Frequency shifting

exp(j2zft)g(t)=G(f-f,)

6. Area under g(t)

[ g(t)dt=5(0)

20



. Chapter 2.3 Properties of the Fourier Transform é//;:',%é

\ &
PN & 2y
s g
& municate, <& —
. ;

Property Mathematical Description -
7. Area under G( f) g(O):j_o:oG(f)df
e Sal)= jnto(1)
o megsion e |10y~ _Lo(11 21
nctone | T 9()=G(f) then g’ () = C"(-1)
netmedoman | 9:(08:(0)= [ 6, (2)6(f ~4)dz
o time doman || 9:(1)0 (t=7)dz =Gy (£)6,(f)
gy heorr MECESNEOE




o Property 1 : Linearity (Superposition)

Let g,(t)=G,(f) and 9g,(t) =G,(f). Then for all constants c,
and c,, we have

c,0,(t)+¢,0,(t) =c¢G, +¢,G,( )

o Proof: the proof of this property follows simply from the
linearity of the integrals defining G( f) and g(t).

22
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o [Example 2.3] Combinations of Exponential Pulses
Consider a double exponential pulse o

exp(-at), t>0 '
g(t)=41 t=0 -~ L,

| |
\eXp(at), t < O -1/a 0 1/a :
_ Symmetric in time domain.
—EXp (_a |t|) Spectrum is real and symmetric.

This pulse may be viewed as the sum of a truncated decaying
exponential pulse and a truncated rising exponential pulse.

6(f)ee b 4 L2
a+ |2zt a-—)2xf 3_2+(27zf)
2a
exp(—-alt])| =
P(-alt]) 2 (271 )

23



o [Example 2.3] Combinations of Exponential Pulses(cont.)

g()

exp(-at), t>0
g(t)=10, t=0 \ |
—exp(at), t<0 \

1, t>0
sgn(t)=<0, t=0
-1, t<0

=1:0

g(t)=exp(-alt|)sgn(t)

24



o [Example 2.3] Combinations of Exponential Pulses(cont.)

1 1
F [exp(_a|t|)sgn(t)] T a+ )27 f a- 1271
. —4rf
a’+ (2 f )2
—|4rf
exp(—a|t|)59”(t) — 52 _|_J(27zf )2

The Fourier transform is odd and purely imaginary.

o In general, a real odd-symmetric time function has an odd and
purely imaginary function as its Fourier transform.

25
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o Property 2 : Time Scaling

Compression of a function in

1 ( f j the time domain is equivalent

RN at = — G to the expansion of its Fourier
Let g(t) = G(f). Then g(at) -

| a| transform in the frequency
domain, or vice versa.

o Proof : F[g(at)}:jjog(at)exp(—jZﬂft)dt r=at—>t=

Fora>0:F|g(at)] :ij_ig (r)exp{—jZn(ijf}df :lg(iJ

a a a a

D | N

Fora<0:F|g(at)] =£ng(r)exp{—j27z(ijr}dr

a a

- —i ZQ(T)GXP{—J'Z”(%}}M ) _ie(gj

Q.E.D.
26



Chapter 2.3 Properties of the Fourier Transform |

o Property 3 : Duality
o Ifg(t)=G(f) then G(t)=g(-f)

o Proof G(f)=[ g(t)e > "dt

g(t) = j_ie(f)e””ﬂdf

T tof f ot g(f):fe(t)eﬁ”“dt

g(-f)=] G(t)e > "dt = F{G(1)}

o [Examp|e 2_4] Arect(%)#AT sinc(fT) (2.10)

Asinc(ZWt)ﬁﬁ rect(_—):i rect| —

27



Chapter 2.3 Properties of the Fourier Transform

o Property 4 : Time Shifting
o If g(t)==G(f), then g(t—t,) =G(f)exp(-j2zft,)

o Proof : Letzr=(t-t,)

Fla(t-t)] j g(t—t,)exp(—j2r ft)dt
( )27 ft )J- ()exp(—j27zfz')dr
exp (-

27 ft, ) ( )

o The amplitude of G( f) Is unaffected by the time shift, but
Its phase Is changed by the linear factor -2zft,.

28
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o Property 5 : Frequency Shifting (Modulation Theorem)

o If g(t)=G(f), then exp(j2zft)g(t)=G(f -f,)
where f. is a real constant

° PIOOT e (j2n ) g (t)]= [ g (t)exp[- j2at(f - 1,)] ot

=G(f-f,)

o Multiplication of a function by the factor exp(-2zf.t) is
equivalent to shifting its Fourier transform in the positive
direction by the amount f..

29



o [Example 2.5] Radio Frequency (RF) Pulse

Consider the pulse signal g(t) shown in figure (a) which consists of
a sinusoidal wave of amplitude A and frequency f., extending in
duration from t =-T/2 to t = T/2. This signal is sometimes referred to
as an RF pulse when the frequency f, falls in the radio-frequency
band. The signal g(t) of figure (a) may be expressed mathematically
as follows . o o

A 0

M_H_H_m_ﬂ_m_ﬂ

g(t)=A rect(%) cos(2zx ft)
WVUVVUUYUYY,
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o [Example 2.5] Radio Frequency (RF) Pulse (cont.)
we note that 1
cos(2x f.t) =§[exp(j27z ft)+exp(—j2zf.t)]

applying the frequency-shifting property to the Fourier-transform
pair, we get the desired result

G( f):g{sinc[T(f —f,) [+sinc| T (f + fc)}}

In the special case of f.T>>1, we may use the approximate result

(AT .
TSmc[T(f—fc)], f>0

G(f)=10, f=0

AT .
7smc[T(f +f)], f<0

31

\



o [Example 2.5] Radio Frequency (RF) Pulse (cont.)

The amplitude spectrum of the RF pulse is shown in figure (b). This
diagram, in relation to figure in page 12, clearly illustrates the
frequency-shifting property of the Fourier transform.
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Chapter 2.3 Properties of the Fourier Transform

o Property 6 : Area Under g(t)

If g (t) — G( then J‘ dt _G (0) Physical meaning for G(0)?

That iIs, the area under a functlon g(t) is equal to the value of its
Fourier-transform G( f) at f =0. This result can be obtained by
putting f =0 in the formula of Fourier transform.

G(f)=]" g(t)exp(-j2rft)dt

—00

o Property 7 : Area Under G( f)
Ifg(t)=G(f), then g(0)=[ G(f)df
That Is, the value of a function g(t) at t =0 Is equal to the area
under its Fourier-transform G( f ). This result can be obtained by
putting t =0 in the formula of inverse Fourier transform.
g(t)=jooG(f)exp(j27rft)df

—o0
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Chapter 2.3 Properties of the Fourier Transform,

o Property 8 : Differentiation in the Time Domain

Let g(t)=G( f), and assume that the first derivative of g(t) is
Fourier transformable. Then

jtg()\_j27zf G(f) (2.31)

That 1s, differentiation of a time function g(t) has the effect of
multiplying its Fourier transform G( f ) by the factor j2zf. If we
assume that the Fourier transform of the higher-order derivative

exists, then d" _ ;
9= (i2zf)G(f)

o Proof : This result is obtained by taking the first derivative of both
sides of the integral defining the inverse Fourier transform.

g(t):J.:G( f Yexp( j2r ft)df

34



Chapter 2.3 Properties of the Fourier Transform

o [Example 2.6] Gaussian Pulse

o We will derive the particular form of a pulse signal that has the
same mathematical form as its own Fourier transform.

o By differentiating the formula for the Fourier transform G( f)
with respect to f, we have

d
G()=[" g(t)exp(~j2xft)at —j2ntg(t) = d_fG(f)
o Add (2.31) %g(t);‘ j2zf G(f) plus j timeS—jZﬂtg(t)ﬁiG(f)

df
dgdit) +27tg(t) = j{defc ) + 27 G ( f )}

do(t) _ 4G (1) _
o If T_—Zntg(t),then i =27 G (f)

35



o [Example 2.6] Gaussian Pulse (cont.)

o Since the pulse signal g(t) and its Fourier transform G( f ) satisfy
the same differential equation, they are the same function, I.e.
G(f)=g(f), where g(f) is obtained from g(t) by substituting f
for t.

o Since 49 (1) = —2ztg (t), we can obtain g(t)= eXp(—ﬂtz)

dt
o This pulse is called a Gaussian Pulse.

(1)

j: exp(—7t? ) dt =1 exp(—7t?) = exp(-7 f?)
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Chapter 2.3 Properties of the Fourier Transform

o Property 9 : Integration in the Time Domain
o Let 9(t)=G( f). Then provided that G(0)=0, we have

t 1
dr=—=OG(f .
JLo(r)dr=—26(1) e
o Proof: _dry
9(t)= dt U_wg (T)df}
o Applying the time-differentiation property of the Fourier
transform ix(t);\ j27t X ()

dt

Fla(t)|=G(f)=j2rf {F[J‘_toog(r)df}}

37



o [Example 2.7] Triangular Pulse

o consider the doublet pulse g,(t) shown in Fig. (a). By

Integrating this pulse with respect to time, we obtain the
triangular pulse g,(t).

10

t
-T 0 T
_1'1

(a) ()

o The doublet pulse of figure (a) is real and odd-symmetric and
Its Fourier transform is therefore odd and purely imaginary.

o The triangular pulse of figure (b) is real and symmetric and its

Fourier transform is therefore symmetric and purely real.
38




Chapter 2.3 Properties of the Fourier Transform

o [Example 2.7] Triangular Pulse (cont.)

o 04(t) consists of two rectangular pulse:
o amplitude A, defined for the interval —-T <t<0

o Fourier transform:  ATsinc(fT)exp(jz fT)
o amplitude —A, defined for the interval 0<t<T

o Fourier transform: —ATsInc( fT)exp(— jz fT)
o Invoking the linearity property of the Fourier transform of gl(t)

G,(f)= AT sinc( fT)| exp(jz fT)—exp(-jzfT)]

= 2 JAT sinc( fT)sin(z fT) G,(0)=0
1 sin(z fT
Gz(f):jzﬂfGl(f):AT fzf )smc(fT)

= AT “sinc®( fT)

39



Chapter 2.3 Properties of the Fourier Transform

o Property 10 : Conjugate Functions
o If g(t)=G(f), then for a complex-valued time function g(t) we

have g*(t)ﬁG*(—f)

o Proof : g(t):ij(f)exp(jZﬂft)df

—00

o taking the complex conjugates of both sides yields
j G*(f)exp(—j2x ft)df
o Replacingf Wlth —f gives

j G"(—f)exp(j2r ft)df _j G"(—f)exp(j2r ft)df
o Corollary:  g*(-t)=G"(f)

40
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o [Example 2.8] Real and Imaginary Parts of a Time Function

) g(t)=Re[g(t)]+jIm[g(t)]

g (t)=Re[ g(t) |- jIm[ g(t)]
Ref0(0)]=5[0(0+0° (0] m[o(1)]=5-[o(0)-g"(1)]
Re[g(t)];\%[e(f)m*(_f )]
Im[g(t)];\%[G(f)—G*(—f)]

J
- (m[g®1=0) _
o 1T g(t) Is a real-valued time function, we have G( f )= G*(- f).

In other words, G( f) exhibits conjugate symmetry.

41
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o Property 11 : Multiplication in the Time Domain

o Let 9,(t)=G,(f)and 9,(t)=G,(f).Then
0,(1)9,(t) = | G,(4)G,(f -4)d4

—00

o Proof @ Let’sdenote g,(t)g,(t) =G, (f)
Gy ()= 9,(t)g, (t)exp(-j2x ft)dt
o For g,(t), we have: gz(t)zﬁoGz(f')exp(jzﬂf't)df'
Gy (f)=[" [ 9,(t)G,(f )exp| —j2r(f - ')t jof dt
o Define: J—f_f

elz(f):j_fo[ez(f [ gl(t)exp(_jznzt)dt}dz

42
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o The inner integral is recognized as G,()\)

Gy (f)=["G,(1)G,(f-4)da  QED,
o This integral is known as the convolution integral expressed in

the frequency domain, and the function G,,( f) is referred to as
the convolution of G,(f) and G,( f).

o The multiplication of two signals in the time domain is
transformed into the convolution of their individual Fourier
transforms in the frequency domain. This property is known as
the multiplication theorem.

o Notation: G, (f)=G,(f)*G,
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o Property 12 : Convolution in the Time Domain
o Let 9,(t)=G,(f)and g,(t)=G,(f), then

jjogl(r)gz (t—r)dr\ﬁGl( f )Gz(f)

o Proof : . _
0., (1) =] Gy(f)G,(f)e’ "df

=" 6,(N)| [ g2(we 1 du e
Let A=t-u
=[" [gz (t=4) [ G,(F)ei " df }d/l

“; 0,(2)g,(t-24)A

44
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Chapter 2.3 Properties of the Fourier Transform

o We may thus state that the convolution of two signals in the time
domain is transformed into the multiplication of their individual
Fourier transforms in the frequency domain.

o This property Is known as the convolution theorem.

o Property 11 and property 12 are the dual of each other.

o Shorthand notation for convolution:

0,(t)* 9, (1) =G, ()G, (f)

45



Chapter 2.3 Properties of the Fourier Tr'cmsfor‘m e

o Property 13 : Rayleigh’s Energy Theorem

(Parseval's or Plancharel’s theorem)

o Let g(t) be defined over the entire interval -co<t<co and assume its
Fourier transform G( f ) exists. If the energy of the signal satisfies

E = j ‘g dt<oo

then
[“lo @[ dt={"|c(f) df
o |G(f)[?is defined as the energy spectral density (valid for energy
signal).

o For power signal, we define power spectral density S( f):

P:_[is(f f‘!'ﬂlﬁj ‘g dt (deterministic signal)

46



Chapter 2.3 Properties of the Fourier Transform |

o Proof:
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o [Example 2.9] Sinc Pulse (continued)

o Consider the sinc pulse A sinc(2Wt). The energy of this pulse

equals o
E = AZ_[_ sinc” (2Wt)dt

o The integral in the right-hand side of this equation is rather
difficult to evaluate.

o From example 2.4, the Fourier transform of the sinc pulse A
sinc(2Wt) is equal to (A/2W)rect( f /2W). Applying Rayleigh’s
energy theorem

2
E = (ij " rect? (Ljdf
2W —o0 2W
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Chapter 2.3 Properties of the Fourier Transform%

o Summary of Properties for Fourier Transform

g(t) Real Symmetric | Asymmetric | Real Valued Real Valued and
Valued and Symmetric | Odd Symmetric

G(f)  Conjugate Real Purely Real Valued and  Odd and Purely
Spectrum Symmetry  Valued Imaginary Symmetric Imaginary

o Compression of a function in the time domain is equivalent to the
expansion of its Fourier transform in the frequency domain, or vice
versa.
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Chapter 2.4 The Inverse Relationship be’rweeni—f‘:f”f’?iiéiié-v»
Time and Frequency AW
o The time-domain and frequency-domain description of a
signal are inversely related:

o If the time-domain description of a signal is changed, then the

frequency-domain description of the signal is changed in an
Inverse manner, and vice versa.

o If asignal is strictly limited in frequency, then the time-domain
description of the signal will trail on indefinitely.

o A signal is strictly limited in frequency or strictly band limited if its
Fourier transform is exactly zero outside a finite band of frequencies.

o If asignal is strictly limited in time, then the spectrum of the
signal is infinite in extent.

o A signal is strictly limited in time if the signal is exactly zero outside a
finite time interval.

o1



Chapter 2.4 The Inverse Relationship between —
— TimeandFrequency %
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o Bandwidth

o The bandwidth of a signal provides a measure of the extent of
significant spectral content of the signal for positive
frequencies.

o When the signal is strictly band limited, the bandwidth is well defined.

» When the signal is not strictly band-limited, there is no universally
accepted definition of bandwidth.

o A signal is said to be low-pass if its significant spectral content
IS centered around the origin.

o A signal is said to be band-pass if its significant spectral
content is centered around +f., where f, Is a nonzero frequency.
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Chapter 2.4 The Inverse Relationship be‘rween:;ii’7’*‘545?4?-'-:
Time and Frequency % &7

o Bandwidth (cont.)

o When the spectrum of a signal is symmetric with a main lobe
bounded by well-defined nulls(i.e. frequencies at which the
spectrum is zero), we may use the main lobe as the basis for
defining the bandwidth of the signal.

o When the signal is low-pass, the bandwidth is defined as one
half the total width of the main spectral lobe, since only one
half of this lobe lies inside the positive frequency region.

o When the signal is band-pass with main spectral lobes centered
around +f., where f, is large, the bandwidth is defined as the
width of the main lobe for positive frequency. This definition
of bandwidth is called the null-to-null bandwidth.
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Chapter 2.4 The Inverse Relationship between —.
Time and Frequency N
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o 3-dB Bandwidth

o When the signal is low-pass, the 3-dB bandwidth is defined as
the separation between zero frequency, where the amplitude
spectrum attains its peak value, and the positive frequency at
which the amplitude spectrum drops to 1/+/2 of its peak value.

o When the signal is band-pass, centered at +f,, the 3-dB
bandwidth is defined as the separation (along the positive
frequency axis) between the two frequencies at which the
amplitude spectrum of the signal drops to1/~/2 of the peak

value at f..

o Advantage : it can be read directly from a plot of the amplitude
spectrum.

o Disadvantage: it may be misleading if the amplitude spectrum

has slowly decreasing talils.
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o Root Mean Square (rms) Bandwidth

o Root Mean Square (rms) bandwidth, defined as the square root
of the second moment of a properly normalized form of the
squared amplitude spectrum of the signal about a suitably
chosen point.

o The rms bandwidth of a low-pass signal is formally defined as:
1

( ifz‘G(f)‘zdf\E

\ j_‘:\e(f)fdf )

o An attractive feature of the rms bandwidth is that it lends itself
more readily to mathematical evaluation than the other two
definitions of bandwidth, but it is not as easily measurable in
the laboratory.

W._ =

rms
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Time and Frequency % &7

o Time-Bandwidth product

o For any family of pulse signals (e.g. the exponential pulse)
that differ in time scale, the product of the signal’s duration
and its bandwidth is always a constant, as shown by

(duration) - (bandwidth) = constant

o The product is called the time-bandwidth product or
bandwidth-duration product.

o If the duration of a pulse signal is decreased by reducing the
time scale by a factor a, the frequency scale of the signal’s
spectrum, and therefore the bandwidth of the signal, is
Increased by the same factor a.
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o Time-Bandwidth product (cont.)

o Consider the rms bandwidth. The corresponding definition for the
rms duration is

1

rms k J.:‘g(t)zdt

o The time-bandwidth product has the following form:

TW_:L

'ms rms
A

o Gaussian pulse satisfies this condition with the equality sign.
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Chapter 2.5 Dirac Delta Function ¢

The Dirac delta function, denoted by J(t), is defined as having zero
amplitude everywhere except at t = 0, where it is infinitely large in

such a way that it contains unit area under its curve; i.e.

5(t)=0,t=0 | s(tpt=1

The delta function ¢(t) is an even function of time t.
Shifting property of the delta function:

jjog(t)5(t—to)dt:g(to)

Replication property of the delta function: the convolution of any
function with the delta function leaves that function unchanged.

0()+5(t)=[" 9(r)s(t-r)dr =g (1)

00
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Chapter 2.5 Dirac Delta Function

Fourier transform of the delta function is given by
F[o(t)]=] o(t)exp(-j2r ft)dt=1 s(t)=1

This relation states that the spectrum of the delta function o(t)
extends uniformly over the entire frequency interval.

We may view the delta function as the limiting form of a pulse of
unit area as the duration of the pulse approaches zero.

t :
Arect| — | = AT sinc( fT
. " 7) (1)
Gl
| ] /\f\/\/\/\/\A
t J
° 0 d R EE:

(a) (b)
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Chapter 2.5 Dirac Delta Function

o Applications of the Delta Function

o DCSignal it gt)=c(f)then G(t)=g(-1) l=06(-1)
o By applying the duality property to the Fourier-transform pair of 6 (t) =1
and noting that the delta function is an even function, we obtain

1= 5( f )
o DC signal is transformed in the frequency domain into a delta function.
g(t) G(/)
1.0 A
0 : 0 /
(a) (D)

o Another definition for the delta function:

" exp(—j2x ft)dt=g(f) —Setatmtnieml, [F cos(27 ft)dt = 5( )

—00
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Chapter 2.5 Dirac Delta Function

o Applications of the Delta Function
o Complex Exponential Function

1 ﬁ 5( f ) Applying the frequency-shifting property: N eXp( J272_ fct) ;\ 5( f . fc)
exp(j27 1) g(1)=G(1 -1,

o Sinusoidal Functions
o By using Euler’s formula:

cos(2z ft)= 1[exp( j2rft)+exp(—j2rft)]

1
cos(27zft —[5 (f=f)+s(f+1)] sin(2zft)= 2j[5(1‘—1‘(:)—5(“11)]

WNAAP, CONADNALY
VAVIVAY R VAV AVAY B
Sl R

(a) (® 64 (a) ()



Chapter 2.5 Dirac Delta Function

o Applications of the Delta Function
o Signum Function : sgn(t)

o Definition: r+1’ t>0
sgn(t)=40, t=0
k—l, t<0

o The signum function does not satisfy the Dirichlet conditions and does
not have a Fourier transform.

o The signum function can be viewed as the limiting form of the
antisymmetric double-exponential pulse as the parameter a approaches O.

exp(-at), t>0
g(t)=+0, \ r

t=0

—exp(at), t<O \
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Chapter 2.5 Dirac Delta Function

o Applications of the Delta Function
o Signum Function (cont.)

o From Example 2.3 for double exponential pulse G(f )= —Jart 2
a’+(2rf)
: ~4jrf 1
F(Sgn(t)):hm , 17 > = Sgn(t)‘i -1
g(t)
|G
+1.0 N 5 -~
N /7 N |7 N
~o 4 \ [/ \
S~ \(]
-~ \[!
EEEEE 0 | w
\\\ /
-1.0 ’

(a)
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Chapter 2.5 Dirac Delta Function

o Applications of the Delta Function

o Unit Step Function 11 t>0 1
“(t):<§’ t=0 U(t)=E[Sgn(t)+l]
0, t<0

\

o By using the linearity property of the Fourier transform and 1= 5( f )

1,1

)= f
=T 200
(1) |G(N)]

1.0




Chapter 2.5 Dirac Delta Function

o Applications of the Delta Function
o Integration in the Time Domain (Revisited)

e y(©)=]" o(r)de

o The integrated signal y(t) can be viewed as the convolution of the original
signal g(t) and the unit step function u(t) , as shown by

y(t):j:g(r)u(t—r)dr: g(t)=u(t)
o The time-shifted unit step function u(t—7) is defined by
1, <t

L(t—r):< , T7=1
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Chapter 2.5 Dirac Delta Function

o Applications of The Delta Function (cont.)

o Integration in the Time Domain (Revisited) (cont.)
o The Fourier transform of y(t) can be easily obtained:

Y(f)=G(f){j22f+%5(f)}

o Since G(f)é‘(f):G(O)5(f)

1

1
Y(f)=
( ) )2r f

G(f)+56(0)5(1)

[ g(r)dr= j;ﬂ G(1)+26(0)3(f)

o EQ. (2.39) is a special case of the above equation with G(0)=0.

69



Chapter 2.6
Fourier Transform of Periodic Signals

Wireless Information Transmission System Lab.
Institute of Communications Engineering

National Sun Yat-sen University




Chapter 2.6 Fourier Transform of Periodic Signals |
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o A periodic signal can be represented in terms of a Fourier transform
provided that this transform is permitted to include delta functions.

o Consider a periodic signal g(t) of period Ty,

gy, (t Z c, exp( j2znfyt)

where c,, is the complex Fourier coefficient defined by

= j g, (t)exp(—j2znf,t)dt

To/2 =0

and f, is the fundamental frequency f,=1/T,
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Chapter 2.6 Fourier Transform of Periodic Signals = !

Aa

o Letg(t) be a pulse like function, which equals g(t) over one
period and is zero elsewhere; that Is,

T
t), —-—2X<t<2

g(t)= % (1) =5 2
0, elsewhere

o gr,(t) may now be expressed in terms of the function g(t)

g, (t Zg t—mT,)

M=—0o0

o g(t) i1s Fourier transformable and can be viewed as a generating
function, which generates the periodic signal gr,(t).

1 (To/2
C”:T .[T/z
0

where G(nf,) Is the Fourier transform of g(t) at the frequency nf,,.

g, (t)exp(—j2znft)dt = fojrig(t)exp(—sznfot)dt = f,G(nf,)
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Chapter 2.6 Fourier Transform of Periodic Signals ;
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The formula for the reconstruction of the periodic signal gr,(t) can

be rewritten as: c, = f,G(nf,)

Zc exp( j2znfit) = f, ZG nf, )exp( j2znf,t)

N=—o0

g, (t Z g(t—-mT,)=f, ZG (nf, )exp( j2znf,t)

Mm=-—o0 N=—o0

O, (

0

The above equation is one form of Poisson’s sum formula.
exp(j2zft)=6(f-f,)

> g(t-mT,)= f, > G(nf,)s(f—-nf,) (288

The Fourier transform of a periodic signal consists of delta
functions occurring at integer multiples of the fundamental
frequency f,=1/T,, Including the origin, and that each delta function

is weighted by a factor equal to the corresponding value of G(nfy).
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o The function g(t), constituting one period of the periodic
signal g+,(t), has a continuous spectrum defined by G( f).

o The periodic signal gr(t) has a discrete spectrum.

o Periodicity In the time domain has the effect of changing
the frequency-domain description or spectrum of the
signal into a discrete form defined at integer multiples of
the fundamental frequency.

74
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Chapter 2.6 Fourier Transform of Periodic Slgnals é

o [Example 2.11] Ideal Sampling Function h

o An Ideal sampling function, or Dirac comb, consists of an infinite
sequence of uniformly spaced delta functions.

= i 5(t—mT,)

M=—00

o The generating function g(t) for the ideal sampling function Jr(t)
consists of the delta function 6(t). We therefore have G( f )=1 and
G(nf,)=1 for all n.

o Using Eq. (2.88) > g(t-mT,) = f, ZG (nfy)S(f—nf,) yields

Mm=—o0

Z S(t—-mT,) = f025(f —nf,)

M=—0 N=—o0

o The Fourier transform of a periodic train of delta functions, spaced T,
seconds apart, consists of another set of delta functions weighted by the
factor f,=1/ T, and regularly spaced f, Hz apart along the frequency axis.
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Chapter 2.6 Fourier Transform of Periodic Signals é

> [Example 2.11] Ideal Sampling Function (cont)

a7, (1)

~| &

N

e
.
e
e
—
|~ p—
o f——
|w p—=
| —
o p——
-

(8 o .
o From Poisson’s sum formula: Y. g(t-mT,)=f, >, G(nf,)exp(j2znf;t)
m;f (t-mTy) = f, Z:O exp( j2znf,t) FOUTE! ZOO exp( j22mfT,) = f, n;a( f —nf,)
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Nyquist Sampling Theorem éf/;;-?

o A band-limited signal of finite energy, which only has frequency
components less than f.. Hertz, is completely described by
specifying the values of the signal at instants of time separated by
1/2 f_, seconds.

T, SF or sampling rate f, >2f

m

o A band-limited signal of finite energy, which only has frequency
components less than f.. Hertz, may be completely recovered
from a knowledge of its samples taken at the rate of 2 f_ samples
per second.

o The sampling rate of 2f_ per second, for a signal bandwidth of f
Hertz, is called the Nyquist rate; its reciprocal 1/2 f_ (measured in
seconds) is called the Nyquist interval.
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Nyquist Sampling Theorem

x(t)
t
0
(a)
X5(T) ?Zo 6(t—nT)
=47, =&, 0 74 P i

(c)

X, (t) = x(t)xg (t)

allin.,

—4T —2T

(e)

| X(f) |
/ \ f
AT
(b)
Xg(f) = Ti ; T 8(f—nf)
”TS] L | I 1 1
‘
5 ) 0 f, 2f,
(d)

X1 X (F)= X(F)% X, (f) =

\fm/f,s \/21fs \ I,

v A

0
(f)
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Spectra for Various Sampling Rates

| X_(f) | Filter characteristic to
3 recover waveform

from sampled data
_?_j
—2f
(a)
| X (f) |
w m f
A e 0 f 2f,
(b)

Figure 2.7  Spectra for various sampling rates. (a) Sampled spectrum (f, > 2f,,).
(b) Sampled spectrum (f; < 2f,,).
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Chapter 2.7 Transmission of Signals Through = = -
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o System: any physical device that produces an output signal in
response to an input signal.

o Excitation: input signal.
o Response: output signal.

o Ina linear system, the principle of superposition holds, i.e., the
response of a linear system to a number of excitations applied
simultaneously is equal to the sum of the responses of the system
when each excitation is applied individually.

o Important examples: filters, communication channels.

o Filter: a frequency-selective device that is used to limit the spectrum

of a signal to some band of frequencies.

o Channel: transmission medium that connects the transmitter and
receiver of a communication system.

&
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Chapter 2.7 Transmission of Signals Through
Linear Systems

o Time Response

o In the time domain, a linear system is described in terms of its
Impulse response, which is defined as the response of the system
(with zero initial conditions) to a unit impulse or delta function
o(t) applied to the input of the system.

o If the system Is time invariant, then the shape of the impulse
response Is the same no matter when the unit impulse is applied

to the system.
. Impulse
o Convolution Integral:  pa— response > y(1)

hit)




Chapter 2.7 Transmission of Signals Through . =~ -
Linear Systems %?il

o Causality and Stability

o Causal: A system is said to be causal if it does not respond
before the excitation is applied.

o For a linear time-invariant (LTI) system to be causal, the impulse
response h(t) must vanish for negative time, i.e. h(t)=0, t<0.

o A system operating in real time to be physically realizable, it must be
causal.

o The system can be noncausal and yet physically realizable. (non-real-
time).
o Stable: A system is said to be stable if the output signal is
bounded for all bounded input signals.
o Bounded input-bounded output (BIBO) stability criterion.
o Fora LTI system to be stable, the impulse response must be absolutely

Integrable, i.e. J:‘h(t)‘dt <o (2.100)
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Chapter 2.7 Transmission of Signals Thr'ough
Linear Systems

o Frequency Response

o Consider a LTI system of impulse response h(t) driven by a
complex exponential input of unit amplitude and frequency f

x(t)=exp( j2r ft)
o The response of the system is obtained as
y(t)= h(t)*x(t):f h(r)exp[j27zf (t—T)]dT
:exp(j27z ft)j_oo h(Z’)EXp(—jZﬂ'fZ‘)dT

o Transfer function of the system is defined as the Fourier
transform of its impulse response

H(f)=["h(t)exp(-j2rft)dt  y(t)=H(f)exp(j2xft)

=H(f)x(t)

i(n)=2l

exp 1272' ft
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Chapter 2.7 Transmission of Signals Thr'ough
Linear Systems

o Frequency Response (cont.)
o Consider an arbitrary signal x(t) applied to the system:

x(t):j_ix (f)exp(j2r ft)df

or, equivalently, in the limiting form (a superposition of
complex exponentials of incremental amplitude)

X(t) = lim ZX )exp( j2r ft) Af
f=kAf k==
o Because the system IS linear, the response Is:

y(t)= lim Z H(f)X(f)exp(j2zft)df y(t)=H(f)x(t)

f=kAf K=—®

= [ H(f)X(f)exp(j2zit)df  yo)=] ¥(1)ew(i2rt)ar

Y(f)=H(f)X(f)
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o Frequency Response (cont.)

o The transfer function H( f ) Is a characteristic property of a LTI
system. It is a complex quantity: H(f)=|H (f)lexp| jB(f)]

o |H( f)|: amplitude response

o B( ). phase or phase response

o If the iImpulse response h(t) is real-valued, the transfer
function H( f ) exhibits conjugate symmetry:

HO=H(=F) A(f)=-p(-1)
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o Freguency Response (cont.)

o Illustrating the definition of system bandwidth

[H(f)]

Low-pass system of bandwidth B

<
=
Lt ——————




Chapter 2.7 Transmission of Signals Thr'ough
Linear Systems

o Paley-Wiener Criterion

o A necessary and sufficient condition for a function a( ) to be the
gain of a causal filter is the convergence of the integral

this condition is known as the Paley-Wiener criterion.

o We may associate with this gain a suitable phase g( f ), such that
the resulting filter has a causal impulse response that is zero for
negative time.

o The Paley-Wiener criterion Is the frequency-domain equivalent
of the causality requirement.

o A realizable gain characteristic may have infinite attenuation for
a discrete set of frequencies, but it cannot have infinite
attenuation over a band of frequencies.
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2.8 Filters 7
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A filter is a frequency-selective device that is used to limit the
spectrum of a signal to some specified band of frequencies.

Freguency response is characterized by a passband and a stopband.

The frequencies inside the passband are transmitted with little or no
distortion, whereas those in the stopband are rejected.

There are low-pass, high-pass, band-pass, and band-stop filters.

low-pass |1 ()l band-pass |H(f)l

0 0
high-pass |H ()] band-stop |H(f)]
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2.8 Filters

o Time response of the ideal low-pass filter

X(t) —> LPF > y()=x(t-t)
o The transfer function of an ideal low-pass filter is defined by:

0 exp(-j2nft,), -B<f<B
(7)= 0, f|>B

o The ideal low-pass filter is noncausal because it violates the
Paley-Wiener criterion.

o This can be confirmed by examining the impulse response h(t)

h(t) =" exp[ j2f (t—t,)Jof

sin| 27B(t—t, ) |
) n(t—to)

= 2Bsinc| 2B(t—t,)| (2.118)

91



2.8 Filters 7
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o There Is some response from the filter before the time t=0, so
confirming that the ideal low-pass filter is noncausal.

o However, we can make the delay t, large enough such that
‘sinc[ZB(t ~t, )]‘ <1 fort<0

o BY so doing, we are able to build a causal filter that closely

approximates an ideal low-pass filter.
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2.8 Filters é//‘;—{

o [Example 2.13] Pulse response of ideal low-pass filter

o Consider a rectangular pulse x(t) of unit amplitude and duration T,
which is applied to an ideal low-pass filter of bandwidth B. The
problem is to determine the response y(t) of the filter.

o Using Eqg. (2.118), and setting t,=0 for simplification

h(t) - ZBSinC(ZBt) Gibbs phenomenon
the resulting filter response T T T Ty

N Asanla
- 1.0 wav_9 O 4\ —
y(t)=[" x(h(t-r)de _ =T
_ ZBJT/Z sin [ZnB (t —T)}drs;;_ * )

T2 2nB(t-7)
(no closed form) o homavar LA Aaas

'U.‘.|._n

|
F\J‘-h
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o Design of Filters
o Design of filters is usually carried out in the frequency domain.
There are two basic steps:

o The approximation of a prescribed frequency response(i.e. amplitude
response, phase response, or both) by a realizable transfer function.

o The realization of the approximating transfer function by a physical
device.

o For an approximating transfer function H( f ) to be physically
realizable, it must represent a stable system.

o Stability Is defined here on the basis of the bounded input
bounded output criterion described in Eqg. (2.100).

o In the following, we specify the corresponding condition for
stability in terms of the transfer function.

o The traditional approach is to replace j2xn f with s.
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o Design of Filters

o Ordinarily, the approximating transfer function H’(s) is a
rational function, which may be expressed in a factored form

T H(9)=H (1) s

(s-2)(s-2,)(s-2,)
~ o p) (=) (5-p,)

where K is scaling factor; z,, z,, ..., z., are the zeros of the
transfer function; p,, p,,..., p, are its poles.
o For low-pass and band-pass filters: m<n.

o If the system iIs causal, all the poles of the transfer function
H’(s) should be inside the left half of the s-plane, I.e. Re[p;]<0.
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2.8 Filters (o

o Different Types of Filters

o Two popular families of low-pass filters: Butterworth filters
and Chebyshev filters. All their zero are at s= o« and the poles
are confined to the left half of the s-plane.

o Butterworth filter

o The poles of the transfer function lie on a circle with origin as the center
and 2zB as the radius, where B is the 3-dB bandwidth of the filter.

o Is said to have a maximally flat passband response.

o Chebyshev filter
o The poles lie on an ellipse.

o Provide faster roll-off than Butterworth filter by allowing ripple in the
frequency response.

o Type 1 filters have ripple only in the passband.
o Type 2 filters have ripple only in the stopband and are seldom used.
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2.8 Filters

o Comparison of the amplitude response of 6™ order Butterworth
low-pass filter with that of 6" order Chebyshev filter.

1.5 | | | I | | | | I

Chebyshev

Butterworth

Amplitude response

0.5 o

0 I I I I I . I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Normalized frequency
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2.8 Filters

A common alternative to both the Butterworth and Chebyshev filters
IS the elliptic filter, which has ripple in both the passband and the
stopband.

Elliptic filter provide even faster roll-off for a given number of poles
but at the expense of ripple in both the passband and stopband.

Butterworth filters are the simplest and elliptic filters are the more
complicated to design in mathematical terms.

The finite-duration impulse response (FIR) filter is often used in
digital signal processing.

The FIR filter is the equivalent of the tapped delay-line filter
described in the previous section.

The FIR filter has only zeros; it is thus inherently stable.
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2.8 Filters

o Amplitude response of 81" order elliptic bandpass filter.

10 l | | | | | | | |

O_ —

-10 -

20 ]

30 _

40 |— —

Amplitude (dB)

50 —

-60

70 -

_80 | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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2.8 Filters

o Amplitude response of 29-tap FIR low-pass filter.
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2.8 Filters

o Tapped-delay-line Filter (FIR Filter)

K AE ) —>| Delay | Delay | o - o—>| Delay o—>| Delay
At At At At
ZUO ” ZU]_ - ZU2 ” o w N—3 %)( 101\1_2 %)( ZUN'_]. X
Y Y Y Y Y Y
y(n A7)
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2.9 Low-Pass and Band-Pass Signals _/

> s

o ®

& P rnunicatio®® Co —
LABS

&

o Communication using low-pass signals is referred to as baseband
communication.

o In some transmission media, there Is insufficient spectrum at
baseband (e.g., radio waves) or the properties of media are not
conductive to conducting signal at baseband (e.g., optical fibers). In
these cases, we employ band-pass communications.

[G(NI s(t)
alt)
[G(f) |

N

/\ 0 /\ f VTV |
i ' [ LGARALLTY}
U ’\ u |
Illustration of spectrum of band-pass signal. [llustration of time-domain band-pass signal.
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2.9 Low-Pass and Band-Pass Signals

o Narrow-band signal: the bandwidth 2W is small compared to the

carrier frequency f,.
o A real-valued band-pass signal g(t) with non-zero spectrum G( f) in

the vicinity of f. may be expressed in the form:
g(t)=a(t)cos| 2nft+gp(t)]
o a(t): envelope (non-negative)

o @(t) : phase
o Using the relationship cos(A+B)=cos(A)cos(B)-sin(A)sin(B)

g(t)=g, (t)cos(2nft)- g, (t)sin(2xf.t) (2.123)

g, (t)=a(t)cos¢(t) and QQ(t)=a(t)sin¢(t) )=\ (1) g:?Q)j

@@ure of g(t)} #(t)= tanl[ g, (1)

in-phase of g(t) }




2.9 Low-Pass and Band-Pass Signals /7>~

o Complex Baseband Representation
o EQ.(2.123) may be written as
g(t)=Re| §(t)exp(j2nfyt)] (2.126)
where we define §(t) = g, (t) + jg, (t)
o The 9,(t) and 9o(t) are real, we refer to §(t) as the complex
envelope of the band-pass signal.

9(t) =5 8(t)exp(j2nt.t) + 4" (t)exp(~ 2nt1)]

_F G(f)=%[é(f —f)+G (=f - 1.)]

|G(f)I

\|é(f)| —_—
\ A

—f, 0 4i>‘ f
2W

W0 W f
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LAB:

o [Example 2.14] PF pulse (continued) — read by yourself
o To determine the complex envelope of the RF pulse

g(t)=A rect(%) cos( 2xf,t)

o Assume f,.T>>1, so that g(t) is narrow-band

g(t)= Re{A rect(%j exp( j2nfct)}
the complex envelope is

§(t)= A rect (%j

and the envelope equals

a(t)=|g(t) = A rect(%j
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2.10 Band-Pass Systems

o Summaries of low-pass systems:

o X(t) represents the message signal, y(t) is the received or output
signal, and h(t) is the impulse response of the channel or filter.

o X(1)=F[x(®], H(T)=F[h(®)], Y(T)=Fly(n)]
o Time domain y(t): j X(z')h(t—z')dz'

o Frequency domain Y (f)=H(f)X(f)

o These equations are valid for linear systems.
o Band-pass system )

o Time domain y(t)= j x(z)h(t-7)dz

o Frequency domain Y (f)=H(f)X(f)
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o Band-pass systems g(t)=Re[g(t)exp(j2nf.t)] (2.126)

o When h(t) is the impulse response of a bandpass filter, by
analogy with g(t) of Eq. 2.126, it may be represented as

h(t)= Re[ﬁ(t)exp( j27rfct)]
where h(t)is the complex impulse response of the bandpass
filter.

o This response and its Fourier transform may be expressed as

n(0)=Re[(000(126]  [au(ay-L(nen)

:%'ﬁ (t)exp(j2nf,t)+h" (t)exp(~ j2nf )]
H(f):%:ﬁ(f—fC)+H~*(—f—fC)] (analogous to 2.129)

Positive frequency portions of H( f) Negative frequency portions of H(f)
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Since H(f) is low-pass limited to | f |<B, we can obtain

. 2H(f), >0
H(f_fc):{ (§) f <0

T f_ ) 0, f>0
(=f-f)= 2H™(f), f<0

This low-pass filter response is the frequency-domain equivalent
of the complex impulse response of the filter.

The output y(t) Is also a band-pass signal:

y(t)=Re| (t)exp(j2rfy)]

where §(t) is the complex envelope of y(t).
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Y(f)=

H
1
2
1
2
1
2

_ _ ~ ~ * )
Y (F—£)+V (- = 1)] H(f - )X (=f - %)
where Y(f):%ﬁ(f))z(f) (2.139)

V(t)=%ﬁ(t)*5’<(t) (2.140)

o The complex envelope of the band-pass output is the convolution
of the complex envelope of the filter and the input, scaled by the

factor Y.
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2.10 Band-Pass Systems
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o The analysis of a band-pass system is complicated due to the

multiplying factors cos(2zft) and sin(2xf.t).
o The significance of Eq. (2.140) is that, we need only concern the
low-pass functions, x(t),h(t), and y(t).

o In other words, the analysis of a band-pass system is replaced by
an equivalent but much simpler low-pass analysis that completely
retains the essence of the filtering process.

x(t) = Re [x(¢) exp(j2wf.t)]

h(t)

(a)

)} e
imunicato™
ABS

y(t) = Re [5(¢) exp(j2=f,t)]
—> A
3
2y(1)
é



2.10 Band-Pass Systems (x
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o [Example 2.15] Response of an ideal band-pass filter to
a pulsed RF wave

o Target: compute the response of an ideal band-pass filter H( )
to an RF pulse of duration T and carrier frequency f. ( f. T>>1)

x(t)=A rect(%) cos(2nft) .,

2.0

“1(-:— low-pass equivalent [0
| 4
;|’ 0 /| d -B 0 B h
- 2, —-B<f<B . _
H(f):{o’ 1> B —— h(t)=4B sinc(2Bt)
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2.10 Band-Pass Systems

x(t)=A rect(l
|

j cos(2xf t)
low-pass equivalent j

—~ —

=) (t)=Arect

—]

= §(t) =%ﬁ(t)* X(t)  (no closed form)

/ I\
I \\
]
1 \
] 1
I 0 quxoxm\\ f(\MMW)@
\ !
\ I
\
\ ) | ] | /
A rd
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2.11 Phase and Group Delay

Whenever a signal is transmitted through a dispersive (frequency-
selective) device such as a filter or communication channel, some
delay Is introduced into the output signal in relation to the input
signal.

In an ideal filter, the phase response varies linearly with frequency
Inside the passband of the filter, in which case the filter introduces a
constant delay.

Question: what If the phase response of the filter is nonlinear?

Signal Models: assume that a steady sinusoidal signal at frequency f, is
transmitted through a dispersive channel that has a total phase-shift of g( f,).

o Phase delay of the channel: g( f.)/2 zf, [sec] is the time taken by the received
signal phasor to sweep out this phase lag.

Phase delay Is not necessarily the true signal delay.
The true signal delay is represented by the envelope or group delay.
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o Assume that the dispersive channel is described by the transfer

function: H(f)= Kexp[j,b’(f)}

where K Is a constant and the phase f( f) is a nonlinear function of
frequency.

o The input signal x(t) consists of a narrow-band signal:
x(t)=m(t)cos(2xf t)
where m(t) is a low-pass (information-bearing) signal with its
spectrum limited to the frequency interval | f| = W. Assume f, >> W.

o By using the Taylor series about the point f=f_ and retaining only the

first two terms:
aﬁ(f) Taylor seriesatf = f,
f)=pB(f)+(f-"f)—2 = " (1, :
=B+ (-0 580
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2.11 Phase and Group Delay

o Define phase delay: rp:_'i(ffc)
7T C
op( f
o Define group delay: Z'g:—zl IB@EC )‘f:fc
T
op(f)

B(f)=p(f)+(f-f) ~ \f:fc = B(f)=-2xfz, —2z(f 1)z,

o The transfer function of the channel takes the form:
H(f)=Kexp|-j2zfzr,—j2z(f-f)z, |
o Equivalent low-pass filter ”<f>={2H(fo,_ & f o
~ ] ] (2.134)
H(f)=2K eXp(—jZﬂ'fCTp - j27Zng)

o Low-pass complex envelope and its Fourier transform:

~

K(t)=m(t), X(1)=M ()2 F[m()]



2.11 Phase and Group Delay

The Fourier transform of the complex envelope of the received

signal: va(f):%H'(f)X(f) (2.139)

= Kexp(-j2rfz,)exp(-j2zfr )M (f)

The term exp(-)2zfz, )M( T ) represents the Fourier transform of the
delayed signal m(t-z,).
Complex envelope of the received signal:
S'/(t) =K exp(—j27z fCTp)m(t—Tg)
Received signal:
y(t)=Re| y(t)exp(j2rft)]
= Km(t-7, )cos[27z fL(t —rp)]
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2.11 Phase and Group Delay
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The sinusoidal carrier wave cos(2xf.t) Is delay by z, seconds, hence
T, represents the phase delay. Sometimes, 7, Is also referred to as the
carrier delay.

The envelope m(t) Is delayed by 7, seconds; hence, z, represents the
envelope or group delay.

74 IS related to the slope of the phase g( f ), measured at f=f.

When the phase response S( f) varies linearly with frequency, the
signal is delayed but undistorted.

When this linear condition is violated, we get group delay distortion.
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2.12 Sources of Information é
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LAB:

o An example of waveform that represents an analog source of

information.
3
I
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2.12 Sources of Information

o Some source are digital in the sense that the information can be
naturally represented as a sequence of zeros and ones.

o The digital waveform can be represented as:

K
Z b p(t—KT)
k=0
1 0 1 1 0 0 1
Figure 2.38 (a)
‘ _‘ rectangular pulse shape

(a)

Ap(t-0T)  Ap(t-2T) Ap(t-37)

Figure 2.38 (b)
non-rectangular
pulse shape

-Ap(t-1T) ~Ap(t-47T) o s Time ({ —=

(b)
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