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Chapter 2.1 Introduction

◊ We identify deterministic signals as a class of signals whose 
waveforms are defined exactly as functions of time.

◊ In this chapter we study the mathematical description of such 
signals using the Fourier transform that provides the link 
between the time-domain and frequency-domain descriptions  of 
signal.

◊ Another related issue that we study in this chapter is the 
representation of linear time-invariant systems. Filters of 
different kinds and certain communication channels are 
important examples of this class of systems.
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◊ Fourier transform is defined as

◊ g(t) denote a nonperiodic deterministic signal.
◊ .
◊ variable f denotes frequency and t denotes time.

◊ Inverse Fourier transform is defined as

Chapter 2.2 The Fourier Transform

( ) ( ) ( )exp 2G f g t j ft dtπ
∞

−∞
= −∫

1j = −

( ) ( ) ( )exp 2g t G f j ft dfπ
∞

−∞
= ∫
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Chapter 2.2 The Fourier Transform

◊ We have used a lowercase letter to denote the time function and a 
uppercase letter to denote the corresponding frequency function. The 
functions g(t) and G( f ) are said to constitute a Fourier-transform 
pair.

◊ For the Fourier transform of a signal g(t) to exist, it is sufficient, but 
not necessary, that g(t) satisfies three sufficient conditions known 
collectively as Dirichlet’s conditions:
◊ The function g(t) is single-valued, with a finite number of 

maxima and minima in any finite time interval.
◊ The function g(t) has finite number of discontinuities in any finite 

time interval.
◊ The function g(t) is absolutely integrable, i.e.

( )g t dt
∞

−∞
< ∞∫
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Chapter 2.2 The Fourier Transform

◊ We may safely ignore the question of the existence of the Fourier 
transform of a time function when it is an accurately specified 
description of a physically realizable signal.

◊ Physical realizability is a sufficient condition for the existence of  
a Fourier transform.

◊ All energy signals are Fourier transformable.

◊ Energy signals:

◊ Plancherel’s theorem: if a time function g(t) is such that the value 
of the energy                            is defined and finite, then the 
Fourier transform G( f ) of the function g(t) exists and

( ) 2
g t dt

∞

−∞
< ∞∫

( ) ( ) ( )
2

lim exp 2 0.
A

AA
g t G f j ft df dtπ

∞

−∞ −→∞

 
− = 

 
∫ ∫

( ) ( )2
;  0g t dt P

∞

−∞
< ∞ =∫

( )

( )

21lim
2

Power Signal:0

                       

T

TT
P g t dt

T
P

E

−→∞
=

< < ∞

= ∞

∫
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Chapter 2.2 The Fourier Transform

◊ Notations
◊ time t measured in second (s)
◊ frequency f measured in Hertz (Hz)
◊ angular frequency (radians per second, rad/s).
◊ A convenient shorthand notation for the transform relations:

◊ Fourier transformation

◊ Inverse Fourier  transformation

where         and           play the roles of linear operators.
◊ Fourier-transform pair 

2 fω π=

( ) ( )G f F g t =  

( ) ( )1g t F G f−  =  

[ ]1F −[ ]F

( ) ( )g t G f
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Chapter 2.2 The Fourier Transform

◊ Continuous Spectrum
◊ By using the Fourier transform operation, a pulse signal g(t) of 

finite energy is expressed as a continuous sum of exponential 
functions with frequencies in the interval -∞ ~ ∞. The 
amplitude of a component of frequency f is proportional to 
G( f ), where G( f ) is the Fourier transform of g(t).

◊ At any frequency f, the exponential function exp(j2 πft) is 
weighted by the factor G( f )df , which is the contribution of 
G( f ) in an infinitesimal interval df centered at the frequency f.

◊ We may express the function g(t) in terms of the continuous 
sum of such infinitesimal components:

( ) ( ) ( )exp 2g t G f j ft dfπ
∞

−∞
= ∫
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◊ In general, the Fourier transform G( f ) is a complex function of 
frequency f :

◊ If g(t) is a real-valued function of t, then
◊ G(-f )=G*( f )
◊ |G(-f )|=|G*( f )| =|G( f )|: an even function of f
◊ Θ(-f )=-Θ( f ): an odd function of f
◊ The spectrum of a real-valued signal exhibits conjugate symmetry.

Chapter 2.2 The Fourier Transform

( ) ( ) ( )expG f G f j fθ =  

( ) ( )
( ) ( )

 is called the continuous amplitude spectrum of 

   is called the continuous phase spectrum of 

G f g t

f g tθ

( ) ( )

( ) ( )( ) ( ) ( )

2

*
2 2*

j ft

j ft j ft

G f g t e dt

G f g t e dt g t e dt G f

π

π π

∞ −

−∞

∞ ∞−

−∞ −∞

=

= = = −

∫

∫ ∫

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

* exp

exp

exp

G f G f G f j f

G f G f j f

G f j f

θ

θ

θ

 − = = − 
 − = − − 

 = − 
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Chapter 2.2 The Fourier Transform

◊ [Example 2.1] Rectangular Pulse
◊ Define a rectangular function of unit amplitude and unit 

duration:
( )

1 11,
2 2rect

10,
2

t
t

t

 − < <= 
 ≥


( )  rect tg t A
T
 =  
 

( ) ( )

( )

( )

( ) ( )

/2

/2
/2

/2

2/2

0
0

exp 2

cos(2 ) sin(2 )

sin 2
2 cos(2 ) 2

2

sin
sinc

T

T
T

T
T

T

G f A j ft dt

A ft j ft dt

ft
A ft dt A

f

fT
AT AT fT

fT

π

π π

π
π

π

π
π

−

−

= −

= −

= =

 
= ≡ 

 

∫
∫

∫

( ) ( )sin
sinc

πλ
λ

πλ
≡

( ) rect  sinctA AT fT
T
 
 
 

 (2.10)

Real-Valued
and Symmetric

Real-Valued
and Symmetric
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Chapter 2.2 The Fourier Transform
◊ sinc function

◊ As the pulse duration T is decreased, the first zero-crossing of the 
amplitude spectrum |G( f )| moves up in frequency.

◊ The relationship between the time-domain and frequency-domain is 
an inverse one.

◊ A pulse, narrow in time, has a significant frequency description over 
a wide range of frequencies, and vice versa.

( ) ( )sin
sinc

πλ
λ

πλ
≡
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Chapter 2.2 The Fourier Transform

◊ [Example 2.2] Exponential Pulse
◊ A truncated form of a decaying exponential pulse is shown in the 

following figure

(a)Decaying exponential pulse. (b)Rising exponential pulse.
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Chapter 2.2 The Fourier Transform

◊ [Example 2.2] Exponential Pulse(cont.)
◊ It is convenient to mathematically define the decaying 

exponential pulse using the unit step function.
◊ An unit step function is defined as:

◊ Decaying exponential pulse of figure (a) can be expressed as

( )

1, 0
1 , 0
2
0 0

t

u t t

t

>
= =


<

( ) exp( ) ( )g t at u t= −
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Chapter 2.2 The Fourier Transform

the Fourier transform of  this pulse is

the Fourier-transform pair for the decaying  exponential pulse of 
figure (a) is therefore

( ) ( ) ( )

( )
( )

( )

0

0
0

exp exp 2

exp 2
exp 2  

2

1
2

G f at j ft dt

t a j f
t a j f dt

a j f

a j f

π

π
π

π

π

∞

∞
∞

= − −

 − +  = − + = −  +

=
+

∫

∫

( ) ( ) 1exp
2

at u t
a j fπ

−
+
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Chapter 2.2 The Fourier Transform

◊ [Example 2.2] Exponential Pulse(cont.)
◊ Rising exponential pulse of Fig. (b)

◊ The decaying and rising exponential pulses are both 
asymmetric functions of time t .

◊ Their Fourier transforms are therefore complex valued.
◊ Truncated decaying and rising exponential pulses have the 

same amplitude spectrum, but the phase spectrum of the one is 
the negative of that of the other.

( ) ( ) ( )expg t at u t= −

( ) ( ) ( )

( )

0

0

exp exp 2

1exp 2  
2

G f at j ft dt

t a j f dt
a j f

π

π
π

−∞

−∞

= −

 = − =  −

∫

∫

( ) ( ) 1exp
2

at u t
a j fπ

−
−
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Fourier-transform Pairs
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Chapter 2.3 Properties of the Fourier Transform 

◊ Summary of properties of the Fourier transform

Property Mathematical Description

1. Linearity

2. Time scaling

3. Duality

4. Time shifting

5. Frequency shifting

6. Area under g(t)

( ) ( ) ( ) ( )1 2 1 2 ,
                          and  are constants.
ag t bg t aG f bG f

a b
+ +

( ) 1 fg at G
a a

 
 
 

 where  is constanta

( ) ( ) ( ) ( )If   then   g t G f G t g f− 

( ) ( ) ( )0 0exp 2g t t G f j ftπ− −

( ) ( ) ( )exp 2 c cj f t g t G f fπ −

( ) ( )0g t dt G
∞

−∞
=∫
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Property Mathematical Description

7. Area under

8.Differentiation in
the time domain
9. Integration in the 
time domain
10. Conjugate      
functions
11. Multiplication in 
the time domain
12. Convolution in 
the time domain
13. Rayleigh’s 
energy theorem

( )G f ( ) ( )0g G f df
∞

−∞
= ∫

( ) ( )2d g t j fG f
dt

π

( ) ( ) ( ) ( )01 
2 2

t G
g d G f f

j f
τ τ δ

π−∞
+∫ 

( ) ( )If   g t G f ( ) ( )then  g t G f∗ ∗ −

( ) ( ) ( ) ( )1 2 1g t g t G G f dλ λ λ
∞

−∞
−∫

( ) ( ) ( ) ( )1 2 1 2g g t d G f G fτ τ τ
∞

−∞
−∫ 

( ) ( )
2 2

g t dt G f df
∞ ∞

−∞ −∞
=∫ ∫
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22

◊ Property 1：Linearity (Superposition)
Let                            and                            .  Then for all constants c1
and c2, we have

◊ Proof: the proof of this property follows simply from the 
linearity of the integrals defining G( f ) and g(t).

( ) ( ) ( )1 1 2 2 1 1 2 2c g t c g t c G c G f+ +

1 1( ) ( )g t G f 2 2( ) ( )g t G f

Chapter 2.3 Properties of the Fourier Transform 
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◊ [Example 2.3] Combinations of Exponential Pulses
Consider a double exponential pulse

This pulse may be viewed as the sum of a truncated decaying 
exponential pulse and a truncated rising exponential pulse.

( )
( )

( )
( )

exp , 0
1, 0
exp , 0

        =exp

at t
g t t

at t

a t

 − >
= =
 <

−

( )
( )22

1 1 2
2 2 2

aG f
a j f a j f a fπ π π

= + =
+ − +

( )
( )22

2exp
2
aa t

a fπ
−

+


Symmetric in time domain.
Spectrum is real and symmetric.
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◊ [Example 2.3] Combinations of Exponential Pulses(cont.)

( )
( )

( )

exp , 0
0, 0

exp , 0

at t
g t t

at t

 − >
= =
− <

( )
1, 0

sgn 0, 0
1, 0

t
t t

t

+ >
= =
− <

( ) ( ) ( )exp sgng t a t t= −

Chapter 2.3 Properties of the Fourier Transform 
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◊ [Example 2.3] Combinations of Exponential Pulses(cont.)

The Fourier transform is odd and purely imaginary.
◊ In general, a real odd-symmetric time function has an odd and 

purely imaginary function as its Fourier transform.

( ) ( )

( )22

1 1exp sgn
2 2

4
2

F a t t
a j f a j f

j f
a f

π π
π
π

 − = −  + −
−

= −
+

( ) ( )
( )22

4exp sgn
2

j fa t t
a f

π
π

−
−

+
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◊ Property 2：Time Scaling

Let                        . Then 

◊ Proof：

( ) ( )g t G f

( ) 1 fg at G
a a

 
 
 



( ) ( ) ( )exp 2F g at g at j ft dtπ
∞

−∞
  = −  ∫ at t

a
ττ = → =

( ) ( )1 1For 0 : exp 2 f fa F g at g j d G
a a a a

τ π τ τ
∞

−∞

     > = − =          
∫

( ) ( )

( )

1For 0 : exp 2

1 1                                 exp 2

fa F g at g j d
a a

f fg j d G
a a a a

τ π τ τ

τ π τ τ

−∞

∞

∞

−∞

   < = −       
    = − − = −        

∫

∫
Q.E.D.

Compression of a function in
the time domain is equivalent 
to the expansion of its Fourier

transform in the frequency
domain, or vice versa.

Chapter 2.3 Properties of the Fourier Transform 
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◊ Property 3：Duality
◊ If                        , then

◊ Proof

◊ [Example 2.4]

( ) ( ) g t G f ( ) ( ) G t g f−

( ) 2

2

2

2

( )

( ) ( )

       ( ) ( )

( ) ( ) { ( )}

j ft

j ft

j ft

j ft

G f g t e dt

g t G f e df

t f f t g f G t e dt

g f G t e dt F G t

π

π

π

π

∞ −

−∞

∞

−∞

∞

−∞

∞ −

−∞

=

=

→ → =

− = =

∫
∫

∫
∫



( ) rect  sinc     (2.10)tA AT fT
T
 
 
 



( ) sinc 2  rect  rect
2 2 2 2
A f A fA Wt
W W W W

−   =   
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◊ Property 4：Time Shifting

◊ If                         , then

◊ Proof ：

◊ The amplitude of G( f ) is unaffected by the time shift, but 
its phase is changed by the linear factor -2πft0.

( ) ( ) g t G f ( ) ( ) ( )0 0exp 2g t t G f j ftπ− −

( )0Let t tτ = −

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

0 0

0

0

exp 2

exp 2 exp 2

exp 2

F g t t g t t j ft dt

j ft g j f d

j ft G f

π

π τ π τ τ

π

∞

−∞

∞

−∞

 − = − − 

= − −

= −

∫
∫
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◊ Property 5：Frequency Shifting (Modulation Theorem)

◊ If                         , then
where     is a real constant

◊ Proof：

◊ Multiplication of a function by the factor exp(-2πfct) is 
equivalent to shifting its Fourier transform in the positive 
direction by the amount fc.

( ) ( ) g t G f ( ) ( ) ( )exp 2 c cj f t g t G f fπ −

cf

( ) ( ) ( ) ( )
( )

exp 2 exp 2  c c

c

F j f t g t g t j t f f dt

G f f

π π
∞

−∞
   = − −   

= −

∫
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◊ [Example 2.5]     Radio Frequency (RF) Pulse
Consider the pulse signal         shown in figure (a) which consists of  
a sinusoidal wave of amplitude A and frequency     , extending in 
duration from t = -T/2 to t = T/2. This signal is sometimes referred to 
as an RF pulse when the frequency      falls in the radio-frequency 
band. The signal         of figure (a) may be expressed mathematically 
as follows

( )g t
cf

cf
( )g t

( ) ( ) rect cos 2 c
tg t A f t
T

π =  
 

Chapter 2.3 Properties of the Fourier Transform 
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◊ [Example 2.5]     Radio Frequency (RF) Pulse (cont.)
we note that

applying the frequency-shifting property to the Fourier-transform 
pair, we get the desired result

in the special case of fcT>>1, we may use the approximate result

( ) ( ) ( )1cos 2 exp 2 exp 2
2c c cf t j f t j f tπ π π = + − 

( ) ( ) ( ){ }sinc sinc
2 c c

ATG f T f f T f f   = − + +   

( )

( )

( )

sinc , 0
2

0, 0

sinc , 0
2

c

c

AT T f f f

G f f
AT T f f f

  − > 


=


  + < 
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◊ [Example 2.5]     Radio Frequency (RF) Pulse (cont.)
The amplitude spectrum of the RF pulse is shown in figure (b). This 
diagram, in relation to figure in page 12, clearly illustrates the 
frequency-shifting property of the Fourier transform. 

Chapter 2.3 Properties of the Fourier Transform 
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◊ Property 6：Area Under g(t)

If                          , then
That is, the area under a function g(t) is equal to the value of its 
Fourier-transform G( f ) at f =0. This result can be obtained by 
putting f =0 in the formula of Fourier transform.

◊ Property 7：Area Under G( f )

If                        , then
That is, the value of a function g(t) at t =0 is equal to the area 
under its Fourier-transform G( f ). This result can be obtained by 
putting t =0 in the formula of inverse Fourier transform.

( ) ( ) g t G f ( ) ( )0g t dt G
∞

−∞
=∫

( ) ( ) g t G f ( ) ( )0g G f df
∞

−∞
= ∫

Chapter 2.3 Properties of the Fourier Transform 

( ) ( ) ( )exp 2G f g t j ft dtπ
∞

−∞
= −∫

( ) ( ) ( )exp 2g t G f j ft dfπ
∞

−∞
= ∫

Physical meaning for G(0)?
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◊ Property 8：Differentiation in the Time Domain
Let                         , and assume that the first derivative of g(t) is 
Fourier transformable. Then

That is, differentiation of a time function g(t) has the effect of 
multiplying its Fourier transform G( f ) by the factor j2πf. If we 
assume that the Fourier transform of the higher-order derivative 
exists, then 

◊ Proof：This result is obtained by taking the first derivative of both 
sides of the integral defining the inverse Fourier transform.

( ) ( ) g t G f

( ) ( )2  d g t j f G f
dt

π

( ) ( ) ( )2
n

n
n

d g t j f G f
dt

π

(2.31)
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( ) ( ) ( )exp 2g t G f j ft dfπ
∞

−∞
= ∫
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◊ [Example 2.6]     Gaussian Pulse
◊ We will derive the particular form of a pulse signal that has the 

same mathematical form as its own Fourier transform.
◊ By differentiating the formula for the Fourier transform G( f ) 

with respect to f, we have

◊ Add (2.31)                                plus j times

◊ If                               , then

( ) ( )2 dj tg t G f
df

π− 

( ) ( )2  d g t j f G f
dt

π ( ) ( )2 dj tg t G f
df

π− 

( ) ( ) ( ) ( )2 2
dg t dG f

tg t j fG f
dt df

π π
 

+ + 
 



( ) ( )2
dg t

tg t
dt

π= − ( ) ( )2
dG f

fG f
df

π= −

Chapter 2.3 Properties of the Fourier Transform 

( ) ( ) ( )exp 2G f g t j ft dtπ
∞

−∞
= −∫
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◊ [Example 2.6]     Gaussian Pulse (cont.)
◊ Since the pulse signal g(t) and its Fourier transform G( f ) satisfy 

the same differential equation, they are the same function, i.e. 
G( f )= g( f ), where g( f ) is obtained from g(t) by substituting  f 
for t.

◊ Since                               , we can obtain

◊ This pulse is called a Gaussian Pulse.  

( ) ( )2
dg t

tg t
dt

π= − ( ) ( )2expg t tπ= −

( )2exp 1t dtπ
∞

−∞
− =∫ ( ) ( )2 2exp expt fπ π− −

Chapter 2.3 Properties of the Fourier Transform 
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◊ Property 9：Integration in the Time Domain
◊ Let                         . Then provided that G(0)=0, we have

◊ Proof:

◊ Applying the time-differentiation property of the Fourier 
transform

( ) ( ) g t G f

( ) ( )1
2

t
g d G f

j f
τ τ

π−∞∫ 

( ) ( )
tdg t g d

dt
τ τ

−∞

 =   ∫

( ) ( ) ( ){ }2
t

F g t G f j f F g dπ τ τ
−∞

   = =    ∫

Chapter 2.3 Properties of the Fourier Transform 

( ) ( )2  d x t j f X f
dt

π

(2.39)
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◊ [Example 2.7]     Triangular Pulse
◊ consider the doublet pulse g1(t) shown in Fig. (a). By 

integrating this pulse with respect to time, we obtain the 
triangular pulse g2(t).

◊ The doublet pulse of figure (a) is real and odd-symmetric and 
its Fourier transform is therefore odd and purely imaginary.

◊ The triangular pulse of figure (b) is real and symmetric and its 
Fourier transform is therefore symmetric and purely real.

Chapter 2.3 Properties of the Fourier Transform 
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◊ [Example 2.7]     Triangular Pulse (cont.)
◊ g1(t) consists of two rectangular pulse: 

◊ amplitude A, defined for the interval
◊ Fourier transform:

◊ amplitude –A, defined for the interval
◊ Fourier transform:

◊ Invoking the linearity property of the Fourier transform of    

0T t− ≤ ≤

0 t T≤ ≤
sinc( )exp( )AT fT j fTπ

sinc( )exp( )AT fT j fTπ− −
( )1g t

( ) ( ) ( ) ( )

( )

2 1

2 2

sin1 sinc
2

sinc

fT
G f G f AT fT

j f f
AT fT

π
π π

= =

=

( ) ( ) ( ) ( )
( ) ( )

1  sinc exp exp

2  sinc sin

G f AT fT j fT j fT

jAT fT fT

π π

π

 = − − 
= ( )1 0 0G =
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◊ Property 10：Conjugate Functions
◊ If                       , then for a complex-valued time function g(t) we 

have

◊ Proof：
◊ taking the complex conjugates of  both sides yields

◊ Replacing f with –f gives

◊ Corollary: 

( ) ( ) g t G f

( ) ( )g t G f∗ ∗ −

( ) ( ) ( )exp 2g t G f j ft dfπ
∞

−∞
= ∫

( ) ( ) ( )exp 2g t G f j ft dfπ
∞∗ ∗

−∞
= −∫

( ) ( ) ( ) ( ) ( )exp 2 exp 2g t G f j ft df G f j ft dfπ π
−∞ ∞∗ ∗ ∗

∞ −∞
= − − = −∫ ∫

( ) ( )g t G f∗ ∗− 

Chapter 2.3 Properties of the Fourier Transform 
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◊ [Example 2.8]     Real and Imaginary Parts of a Time Function
◊

◊ If g(t) is a real-valued time function, we have G( f )= G*(- f ). 
In other words, G( f ) exhibits conjugate symmetry. 

( ) ( ) ( )Re Img t g t j g t   = +   
( ) ( ) ( )Re Img t g t j g t∗    = −   

( ) ( ) ( )1Re
2

g t g t g t∗   = +    ( ) ( ) ( )1Im
2

g t g t g t
j

∗   = −   

( ) ( ) ( )

( ) ( ) ( )

1Re
2
1Im
2

g t G f G f

g t G f G f
j

∗

∗

   + −   

   − −   





(Im[g(t)]=0)

Chapter 2.3 Properties of the Fourier Transform 
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◊ Property 11：Multiplication in the Time Domain
◊ Let                            and                            .Then

◊ Proof：Let’s denote

◊ For g2(t), we have:

◊ Define: 

( ) ( )1 1 g t G f ( ) ( )2 2 g t G f

( ) ( ) ( ) ( )1 2 1 2g t g t G G f dλ λ λ
∞

−∞
−∫

( ) ( ) ( )1 2 12g t g t G f

( ) ( ) ( ) ( )12 1 2 exp 2G f g t g t j ft dtπ
∞

−∞
= −∫

( ) ( ) ( )' ' '
2 2 exp 2g t G f j f t dfπ

∞

−∞
= ∫

( ) ( ) ( ) ( )' ' '
12 1 2 exp 2G f g t G f j f f t df dtπ

∞ ∞

−∞ −∞
 = − − ∫ ∫

'f fλ = −

( ) ( ) ( ) ( )12 2 1 exp 2G f G f g t j t dt dλ πλ λ
∞ ∞

−∞ −∞

 = − −  ∫ ∫

Chapter 2.3 Properties of the Fourier Transform 
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◊ The inner integral is recognized as G1(λ)

◊ This integral is known as the convolution integral expressed in 
the frequency domain, and the function G12( f ) is referred to as 
the convolution of G1( f ) and G2( f ).

◊ The multiplication of two signals in the time domain is 
transformed into the convolution of their individual Fourier 
transforms in the frequency domain. This property is known as 
the multiplication theorem.

◊ Notation:

( ) ( ) ( )12 1 2G f G G f dλ λ λ
∞

−∞
= −∫ Q.E.D.

( ) ( ) ( )12 1 2G f G f G f= ∗

( ) ( ) ( ) ( )1 2 1 2g t g t G f G f∗

( ) ( ) ( ) ( )1 2 2 1G f G f G f G f∗ = ∗

Chapter 2.3 Properties of the Fourier Transform 



44

◊ Property 12：Convolution in the Time Domain
◊ Let                           and                            , then

◊ Proof：

( ) ( )1 1 g t G f ( ) ( )2 2 g t G f

( ) ( ) ( ) ( )1 2 1 2g g t d G f G fτ τ τ
∞

−∞
−∫ 

( )

( ) ( )

2
12 1 2

2 2
1 2

2
2 1

1 2

( ) ( ) ( )

          = ( ) ( )  

Let   

          = ( )

          =

j ft

j uf j ft

j f

g t G f G f e df

G f g u e du e df

t u

g t G f e df d

g g t d

π

π π

π λ

λ

λ λ

λ λ λ

∞

−∞

∞ ∞ −

−∞ −∞

∞ ∞

−∞ −∞

∞

−∞

=

 
  

= −

 −  

−

∫

∫ ∫

∫ ∫

∫ Q.E.D.
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◊ We may thus state that the  convolution of two signals in the time 
domain is transformed into the multiplication of their individual 
Fourier transforms in the frequency domain.

◊ This property is known as the convolution theorem.

◊ Property 11 and property 12 are the dual of each other.

◊ Shorthand notation for convolution:

( ) ( ) ( ) ( )1 2 1 2g t g t G f G f∗ 

Chapter 2.3 Properties of the Fourier Transform 
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◊ Property 13：Rayleigh’s Energy Theorem
(Parseval's or Plancharel’s theorem)

◊ Let g(t) be defined over the entire interval -∞<t<∞ and assume its 
Fourier transform G( f ) exists. If the energy of the signal satisfies

then

◊ |G( f )|2 is defined as the energy spectral density (valid for energy 
signal).

◊ For power signal, we define power spectral density S( f ):

( )
2

E g t dt
∞

∞
= < ∞∫－
( ) ( )2 2

g t dt G f df
∞ ∞

−∞ −∞
=∫ ∫

( ) ( ) ( )
21lim   deterministic signal

2
T

TT
P S f df g t dt

T
∞

−∞ −→∞
=∫ ∫＝

Chapter 2.3 Properties of the Fourier Transform 



47

◊ Proof:
( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

2

2

2

*
2

2

*

*

*

*

j ft

j ft

j ft

E g t dt g t g t dt

g t G f e df dt

G f g t e dt df

G f g t e dt df

G f G f df

G f df

π

π

π

∞ ∞

∞ ∞

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

∞ ∞ −

−∞ −∞

∞

−∞

∞

−∞

= = ⋅

 =   
 =   

 =   

=

=

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫
∫

－ －
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◊ [Example 2.9]     Sinc Pulse (continued)
◊ Consider the sinc pulse A sinc(2Wt). The energy of this pulse 

equals 

◊ The integral in the right-hand side of this equation is rather 
difficult to evaluate.

◊ From example 2.4, the Fourier transform of the sinc pulse A 
sinc(2Wt) is equal to (A/2W)rect( f /2W). Applying Rayleigh’s 
energy theorem 

( )2 2sinc 2E A Wt dt
∞

−∞
= ∫

2
2

2 2

rect
2 2

2 2
W

W

A fE df
W W

A Adf
W W

∞

−∞

−

   =    
   

 = = 
 

∫

∫
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◊ Summary of Properties for Fourier Transform

◊ Compression of a function in the time domain is equivalent to the 
expansion of its Fourier transform in the frequency domain, or vice 
versa.

g(t) Real
Valued

Symmetric Asymmetric Real Valued 
and Symmetric

Real Valued and
Odd Symmetric

G( f )
Spectrum

Conjugate 
Symmetry

Real 
Valued

Purely 
Imaginary

Real Valued and 
Symmetric

Odd and Purely
Imaginary

Chapter 2.3 Properties of the Fourier Transform 
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Chapter 2.4 The Inverse Relationship between 
Time and Frequency

◊ The time-domain and frequency-domain description of a 
signal are inversely related:
◊ If the time-domain description of a signal is changed, then the 

frequency-domain description of the signal is changed in an 
inverse manner, and vice versa.

◊ If a signal is strictly limited in frequency, then the time-domain 
description of the signal will trail on indefinitely.
◊ A signal is strictly limited in frequency or strictly band limited if its 

Fourier transform is exactly zero outside a finite band of frequencies.

◊ If a signal is strictly limited in time, then the spectrum of the 
signal is infinite in extent.
◊ A signal is strictly limited in time if the signal is exactly zero outside a 

finite time interval.
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◊ Bandwidth
◊ The bandwidth of a signal provides a measure of the extent of 

significant spectral content of the signal for positive 
frequencies.
◊ When the signal is strictly band limited, the bandwidth is well defined.
◊ When the signal is not strictly band-limited, there is no universally 

accepted definition of bandwidth.

◊ A signal is said to be low-pass if its significant spectral content 
is centered around the origin.

◊ A signal is said to be band-pass if its significant spectral 
content is centered around ±fc, where fc is a nonzero frequency.

Chapter 2.4 The Inverse Relationship between 
Time and Frequency
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◊ Bandwidth (cont.)
◊ When the spectrum of a signal is symmetric with a main lobe 

bounded by well-defined nulls(i.e. frequencies at which the 
spectrum is zero), we may use the main lobe as the basis for 
defining the bandwidth of the signal.

◊ When the signal is low-pass, the bandwidth is defined as one 
half the total width of the main spectral lobe, since only one 
half of this lobe lies inside the positive frequency region.

◊ When the signal is band-pass with main spectral lobes centered 
around ±fc, where fc is large, the bandwidth is defined as the 
width of the main lobe for positive frequency. This definition 
of bandwidth is called the null-to-null bandwidth.

Chapter 2.4 The Inverse Relationship between 
Time and Frequency
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◊ Bandwidth (cont.)

Chapter 2.4 The Inverse Relationship between 
Time and Frequency
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◊ 3-dB Bandwidth
◊ When the signal is low-pass, the 3-dB bandwidth is defined as 

the separation between zero frequency, where the amplitude 
spectrum attains its peak value, and the positive frequency at 
which the amplitude spectrum drops to            of its peak value.

◊ When the signal is band-pass, centered at ±fc, the 3-dB 
bandwidth is defined as the separation (along the positive 
frequency axis) between the two frequencies at which the 
amplitude spectrum of the signal drops to           of the peak 
value at fc.  

◊ Advantage : it can be read directly from a plot of the amplitude 
spectrum.

◊ Disadvantage: it may be misleading if the amplitude spectrum 
has slowly decreasing tails.

1/ 2

1/ 2

Chapter 2.4 The Inverse Relationship between 
Time and Frequency
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◊ 3-dB Bandwidth

Chapter 2.4 The Inverse Relationship between 
Time and Frequency
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◊ Root Mean Square (rms) Bandwidth
◊ Root Mean Square (rms) bandwidth, defined as the square root 

of the second moment of a properly normalized form of the 
squared amplitude spectrum of the signal about a suitably 
chosen point.

◊ The rms bandwidth of a low-pass signal is formally defined as:

◊ An attractive feature of the rms bandwidth is that it lends itself 
more readily to mathematical evaluation than the other two 
definitions of bandwidth, but it is not as easily measurable in 
the laboratory.

( )
( )

1
2 22

rms 2

f G f df
W

G f df

∞

−∞
∞

−∞

 
 =
 
 

∫
∫
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◊ Time-Bandwidth product
◊ For any family of pulse signals (e.g.  the exponential pulse) 

that differ in time scale, the product of the signal’s duration 
and its bandwidth is always a constant, as shown by

◊ The product is called the time-bandwidth product or 
bandwidth-duration product.

◊ If  the duration of a pulse signal is decreased by reducing the 
time scale by a factor a, the frequency scale of the signal’s 
spectrum, and therefore the bandwidth of the signal, is 
increased by the same factor a.

(duration) (bandwidth) constant⋅ =

Chapter 2.4 The Inverse Relationship between 
Time and Frequency
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◊ Time-Bandwidth product (cont.)
◊ Consider the rms bandwidth. The corresponding definition for the 

rms duration is

◊ The time-bandwidth product has the following form:

◊ Gaussian pulse satisfies this condition with the equality sign.

( )

( )

1
2 22

rms 2

t g t dt
T

g t dt

∞

−∞
∞

−∞

 
 =   
 

∫
∫

rms rms
1

4
T W

π
≥
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Chapter 2.5 Dirac Delta Function

◊ The Dirac delta function, denoted by δ(t), is defined as having zero 
amplitude everywhere except at t = 0, where it is infinitely large in 
such a way that it contains unit area under its curve; i.e.

◊ The delta function δ(t) is an even function of time t.
◊ Shifting property of the delta function:

◊ Replication property of the delta function: the convolution of any 
function with the delta function leaves that function unchanged.

( ) 0, 0t tδ = ≠ ( ) 1t dtδ
∞

−∞
=∫

( ) ( ) ( )0 0g t t t dt g tδ
∞

−∞
− =∫

( ) ( ) ( ) ( ) ( )g t t g t d g tδ τ δ τ τ
∞

−∞
∗ = − =∫
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Chapter 2.5 Dirac Delta Function

◊ Fourier transform of the delta function is given by

◊ This relation states that the spectrum of the delta function δ(t) 
extends uniformly over the entire frequency interval.

◊ We may view the delta function as the limiting form of a pulse of 
unit area as the duration of the pulse approaches zero.

( ) ( ) ( )exp 2 1F t t j ft dtδ δ π
∞

−∞
  = − =  ∫ ( ) 1tδ 

( ) rect  sinctA AT fT
T
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Chapter 2.5 Dirac Delta Function
◊ Applications of the Delta Function

◊ DC Signal
◊ By applying the duality property to the Fourier-transform pair of

and noting that the delta function is an even function, we obtain

◊ DC signal is transformed in the frequency domain into a delta function.

◊ Another definition for the delta function:

( ) 1tδ 

( )1 fδ

( ) ( )exp 2j ft dt fπ δ
∞

−∞
− =∫ ( ) ( )cos 2 ft dt fπ δ

∞

−∞
=∫Delta functin is real.→

( ) ( ) ( ) ( )If   then   g t G f G t g f− 

( )1 fδ −
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Chapter 2.5 Dirac Delta Function

◊ Applications of the Delta Function
◊ Complex Exponential Function

◊ Sinusoidal Functions
◊ By using Euler’s formula:

( ) ( )exp 2 c cj f t f fπ δ −

( ) ( ) ( )1cos 2 exp 2 exp 2
2c c cf t j f t j f tπ π π = + − 

( ) ( ) ( )1cos 2
2c c cf t f f f fπ δ δ − + + 

( ) ( ) ( )1sin 2
2c c cf t f f f f

j
π δ δ − − + 

( )1 fδ

( ) ( ) ( )exp 2 c cj f t g t G f fπ −

Applying the frequency-shifting property:→
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Chapter 2.5 Dirac Delta Function

◊ Applications of the Delta Function
◊ Signum Function：sgn(t)

◊ Definition:

◊ The signum function does not satisfy the Dirichlet conditions and does 
not have a Fourier transform.

◊ The signum function can be viewed as the limiting form of the 
antisymmetric double-exponential pulse as the parameter a approaches 0.

( )
1, 0

sgn 0, 0
1, 0

t
t t

t

+ >
= =
− <

( )
( )

( )

exp , 0
g 0, 0

exp , 0

at t
t t

at t

 − >
= =
− <
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Chapter 2.5 Dirac Delta Function

◊ Applications of the Delta Function
◊ Signum Function  (cont.)

◊ From Example 2.3 for double exponential pulse ( )
( )22

4
2

j fG f
a f

π
π

−
=

+

( )( )
( )220

4 1sgn lim
2a

j fF t
j fa f

π
ππ→

−
= =

+
( ) 1sgn t

j fπ
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Chapter 2.5 Dirac Delta Function

◊ Applications of the Delta Function
◊ Unit Step Function

◊ By using the linearity property of the Fourier transform and 

( )

1, 0
1 , 0
2
0, 0

t

u t t

t

>
= =


<

( ) ( )1 sgn 1
2

u t t = + 

( ) ( )1 1
2 2

u t f
j f

δ
π

+

( )1 fδ
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Chapter 2.5 Dirac Delta Function

◊ Applications of the Delta Function
◊ Integration in the Time Domain (Revisited)

◊ Let

◊ The integrated signal  y(t) can be viewed as the convolution of the original 
signal g(t) and the unit step function u(t) , as shown by

◊ The time-shifted unit step function                is defined by

( ) ( )
t

y t g dτ τ
−∞

= ∫

( ) ( ) ( ) ( ) ( )y t g u t d g t u tτ τ τ
∞

−∞
= − = ∗∫

( )u t τ−

( )

1, 
1 , 
2
0, 

t

u t t

t

τ

τ τ

τ

<
− = =


>
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Chapter 2.5 Dirac Delta Function

◊ Applications of  The Delta Function (cont.)
◊ Integration in the Time Domain (Revisited) (cont.)

◊ The Fourier transform of y(t) can be easily obtained:

◊ Since 

◊ Eq. (2.39) is a special case of the above equation with G(0)=0.

( ) ( ) ( )1 1
2 2

Y f G f f
j f

δ
π

 
= + 

 

( ) ( ) ( ) ( )0G f f G fδ δ=

( ) ( ) ( ) ( )1 1 0
2 2

Y f G f G f
j f

δ
π

= +

( ) ( ) ( ) ( )1 1 0
2 2

t
g d G f G f

j f
τ τ δ

π−∞
+∫ 
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Chapter 2.6 Fourier Transform of Periodic Signals

◊ A periodic signal can be represented in terms of a Fourier transform 
provided that this transform is permitted to include delta functions.

◊ Consider a periodic signal gT0(t) of period T0:

where cn is the complex Fourier coefficient defined by

and f0 is the fundamental frequency f0=1/T0.

( ) ( )
0 0exp 2T n

n
g t c j nf tπ

∞

=−∞

= ∑

( ) ( )0

0
0

2

02
0

1 exp 2
T

n TT
c g t j nf t dt

T
π

−
= −∫
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◊ Let g(t) be a pulse like function, which equals gT0(t) over one 
period and is zero elsewhere; that is, 

◊ gT0(t) may now be expressed in terms of the function g(t)

◊ g(t) is Fourier transformable and can be viewed as a generating 
function, which generates the periodic signal gT0(t).

where G(nf0) is the Fourier transform of g(t) at the frequency nf0.

( ) ( )
0

0 0, 
2 2

0, elsewhere

T
T Tg t t

g t
 − ≤ ≤= 


( ) ( )
0 0T

m
g t g t mT

∞

=−∞

= −∑

( ) ( ) ( ) ( ) ( )0

0
0

2

0 0 0 0 02
0

1 exp 2 exp 2
T

n TT
c g t j nf t dt f g t j nf t dt f G nf

T
π π

∞

− −∞
= − = − ≡∫ ∫
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◊ The formula for the reconstruction of the periodic signal gT0(t) can 
be rewritten as:

The above equation is one form of Poisson’s sum formula.

◊ The Fourier transform of a periodic signal consists of delta 
functions occurring at integer multiples of the fundamental 
frequency f0=1/T0, including the origin, and that each delta function 
is weighted by a factor equal to the corresponding value of G(nf0).

( ) ( ) ( ) ( )
0 0 0 0 0exp 2 exp 2T n

n n
g t c j nf t f G nf j nf tπ π

∞ ∞

=−∞ =−∞

= =∑ ∑

( ) ( ) ( ) ( )
0 0 0 0 0exp 2T

m n
g t g t mT f G nf j nf tπ

∞ ∞

=−∞ =−∞

= − =∑ ∑

( ) ( ) ( )0 0 0 0
m n

g t mT f G nf f nfδ
∞ ∞

=−∞ =−∞

− −∑ ∑

( )0 0nc f G nf=

(2.88)

Chapter 2.6 Fourier Transform of Periodic Signals

( ) ( )exp 2 c cj f t f fπ δ −
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◊ The function g(t), constituting one period of the periodic 
signal gT0(t), has a continuous spectrum defined by G( f ).

◊ The periodic signal gT0(t) has a discrete spectrum.

◊ Periodicity in the time domain has the effect of changing 
the frequency-domain description or spectrum of the 
signal into a discrete form defined at integer multiples of 
the fundamental frequency.

Chapter 2.6 Fourier Transform of Periodic Signals
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◊ [Example 2.11] Ideal Sampling Function
◊ An ideal sampling function, or Dirac comb, consists of an infinite 

sequence of uniformly spaced delta functions.

◊ The generating function g(t) for the ideal sampling function δT0(t) 
consists of the delta function δ(t). We therefore have G( f )=1 and 
G(nf0)=1 for all n.

◊ Using Eq. (2.88)                                                           yields

◊ The Fourier transform of a periodic train of delta functions, spaced T0
seconds apart, consists of another set of delta functions weighted by the 
factor f0=1/ T0 and regularly spaced f0 Hz apart along the frequency axis.

( ) ( )
0 0T

m
t t mTδ δ

∞

=−∞

= −∑

( ) ( ) ( )0 0 0 0
m n

g t mT f G nf f nfδ
∞ ∞

=−∞ =−∞

− −∑ ∑

( ) ( )0 0 0
m n

t mT f f nfδ δ
∞ ∞

=−∞ =−∞

− −∑ ∑
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◊ [Example 2.11] Ideal Sampling Function (cont.)

◊ From Poisson’s sum formula:

( ) ( )0 0 0exp 2
m n

t mT f j nf tδ π
∞ ∞

=−∞ =−∞

− =∑ ∑ ( ) ( )0 0 0exp 2
m n

j mfT f f nfπ δ
∞ ∞

=−∞ =−∞

= −∑ ∑

( ) ( ) ( )0 0 0 0exp 2
m n

g t mT f G nf j nf tπ
∞ ∞

=−∞ =−∞

− =∑ ∑

Fourier
Dual
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Nyquist Sampling Theorem

◊ A band-limited signal of finite energy, which only has frequency 
components less than fm Hertz, is completely described by 
specifying the values of the signal at instants of time separated by 
1/2 fm seconds.

◊ A band-limited signal of finite energy, which only has frequency 
components less than fm Hertz, may be completely recovered 
from a knowledge of its samples taken at the rate of 2 fm samples 
per second.

◊ The sampling rate of 2fm per second, for a signal bandwidth of fm
Hertz, is called the Nyquist rate; its reciprocal 1/2 fm (measured in 
seconds) is called the Nyquist interval.

m
S f

T
2

1
≤ mS ff 2 rate samplingor ≥
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Nyquist Sampling Theorem

∑
∞

−∞=

−=∗=
n

S
S

S nffX
T

fXfXfX )(1)()()( δ



79

Spectra for Various Sampling Rates
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Chapter 2.7 Transmission of Signals Through 
Linear Systems

◊ System: any physical device that produces an output signal in 
response to an input signal.

◊ Excitation: input signal.
◊ Response: output signal.
◊ In a linear system, the principle of superposition holds, i.e., the 

response of a linear system to a number of excitations applied 
simultaneously is equal to the sum of the responses of the system 
when each excitation is applied individually.
◊ Important examples: filters, communication channels.

◊ Filter: a frequency-selective device that is used to limit the spectrum 
of a signal to some band of frequencies.

◊ Channel: transmission medium that connects the transmitter and 
receiver of a communication system.
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◊ Time Response
◊ In the time domain, a linear system is described in terms of its 

impulse response, which is defined as the response of the system 
(with zero initial conditions) to a unit impulse or delta function
δ(t) applied to the input of the system.

◊ If the system is time invariant, then the shape of the impulse 
response is the same no matter when the unit impulse is applied 
to the system.

◊ Convolution Integral:

Chapter 2.7 Transmission of Signals Through 
Linear Systems

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

y t x h t d x t h t

h x t d h t x t

τ τ τ

τ τ τ

∞

−∞

∞

−∞

= − = ∗

= − = ∗

∫
∫
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◊ Causality and Stability
◊ Causal: A system is said to be causal if it does not respond 

before the excitation is applied.
◊ For a linear time-invariant (LTI) system to be causal, the impulse 

response h(t) must vanish for negative time, i.e. h(t)=0, t<0.
◊ A system operating in real time to be physically realizable, it must be 

causal.
◊ The system can be noncausal and yet physically realizable. (non-real-

time).

◊ Stable: A system is said to be stable if the output signal is 
bounded for all bounded input signals.
◊ Bounded input-bounded output (BIBO) stability criterion.
◊ For a LTI system to be stable, the impulse response must be absolutely 

integrable, i.e. ( )h t dt
∞

−∞
< ∞∫
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◊ Frequency Response
◊ Consider a LTI system of impulse response h(t) driven by a 

complex exponential input of unit amplitude and frequency f

◊ The response of the system is obtained as 

◊ Transfer function of the system is defined as the Fourier 
transform of its impulse response

( ) ( )exp 2x t j ftπ=

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

exp 2

exp 2 exp 2

y t h t x t h j f t d

j ft h j f d

τ π τ τ

π τ π τ τ

∞

−∞

∞

−∞

 = ∗ = − 

= −

∫
∫

( ) ( ) ( )exp 2H f h t j ft dtπ
∞

−∞
≡ −∫ ( ) ( ) ( )

( ) ( )
exp 2y t H f j ft

H f x t

π=

=
( ) ( )

( ) ( ) ( )exp 2x t j ft

y t
H f

x t π=≡
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◊ Frequency Response (cont.)
◊ Consider an arbitrary signal x(t) applied to the system:

or, equivalently, in the limiting form (a superposition of 
complex exponentials of incremental amplitude)

◊ Because the system is linear, the response is:

( ) ( ) ( )exp 2x t X f j ft dfπ
∞

−∞
= ∫

( ) ( ) ( )
0

lim exp 2
f kf k f

x t X f j ft fπ
∞

∆ →
=−∞= ∆

= ∆∑

( ) ( ) ( ) ( )

( ) ( ) ( )

0
lim exp 2

exp 2

f kf k f

y t H f X f j ft df

H f X f j ft df

π

π

∞

∆ →
=−∞= ∆

∞

−∞

=

=

∑

∫
( ) ( ) ( )Y f H f X f=
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( ) ( ) ( )y t H f x t=

( ) ( ) ( )exp 2y t Y f j ft dfπ
∞

−∞
= ∫
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◊ Frequency Response (cont.)
◊ The transfer function H( f ) is a characteristic property of a LTI 

system. It is a complex quantity:

◊ |H( f )|: amplitude response

◊ β( f ): phase or phase response

◊ If the impulse response h(t) is real-valued, the transfer 
function H( f ) exhibits conjugate symmetry:

( ) ( ) ( )expH f H f j fβ =  

( ) ( )H f H f= − ( ) ( )f fβ β= − −

Chapter 2.7 Transmission of Signals Through 
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◊ Frequency Response (cont.)
◊ Illustrating the definition of system bandwidth

Low-pass system of bandwidth B

Band-pass system of bandwidth 2B

Chapter 2.7 Transmission of Signals Through 
Linear Systems
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◊ Paley-Wiener Criterion
◊ A necessary and sufficient condition for a function α( f ) to be the 

gain of a causal filter is the convergence of the integral 

this condition is known as the Paley-Wiener criterion.
◊ We may associate with this gain a suitable phase β( f ), such that 

the resulting filter has a causal impulse response that is zero for 
negative time.

◊ The Paley-Wiener criterion is the frequency-domain equivalent 
of the causality requirement.

◊ A realizable gain characteristic may have infinite attenuation for 
a discrete set of frequencies, but it cannot have infinite 
attenuation over a band of frequencies.

( )
21

f
df

f
α∞

−∞
< ∞

+∫
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◊ A filter is a frequency-selective device that is used to limit the 
spectrum of a signal to some specified band of frequencies.

◊ Frequency response is characterized by a passband and a stopband.
◊ The frequencies inside the passband are transmitted with little or no 

distortion, whereas those in the stopband are rejected.
◊ There are low-pass, high-pass, band-pass, and band-stop filters.

f

( )| |H f

f

( )| |H f

f f

( )| |H f ( )| |H f

0

0

0

0

2.8  Filters

low-pass

high-pass

band-pass

band-stop
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◊ Time response of the ideal low-pass filter

◊ The transfer function of an ideal low-pass filter is defined by:

◊ The ideal low-pass filter is noncausal because it violates the 
Paley-Wiener criterion.

◊ This can be confirmed by examining the impulse response h(t)

( )x t ( ) ( )0y t x t t= −LPF

( ) ( )0exp 2π , 
0, 
j ft B f B

H f
f B

 − − ≤ ≤
=  >

( ) ( )
( )

( ) ( )

0

0
0

0

exp 2π

sin 2π
2 sinc 2

π

B

B
h t j f t t df

B t t
B B t t

t t

−
 = − 

 −   = = − −

∫

(2.118)
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2.8  Filters

◊ There is some response from the filter before the time t=0, so 
confirming that the ideal low-pass filter is noncausal.

◊ However, we can make the delay t0 large enough such that

◊ By so doing, we are able to build a causal filter that closely 
approximates an ideal low-pass filter.

( )0sinc 2 1   for 0B t t t − <  
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◊ [Example 2.13]  Pulse response of ideal low-pass filter
◊ Consider a rectangular pulse x(t) of unit amplitude and duration T, 

which is applied to an ideal low-pass filter of bandwidth B. The 
problem is to determine the response y(t) of the filter.

◊ Using Eq. (2.118), and setting t0=0 for simplification

the resulting filter response 

2.8  Filters

( ) ( )2 sinc 2h t B Bt=

( ) ( ) ( )
( )

( )
2

2

sin 2π
2

2π
(no closed form)

T

T

y t x h t d

B t
B d

B t

τ τ τ

τ
τ

τ

∞

−∞

−

= −

 − =
−

∫

∫

Gibbs phenomenon
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◊ Design of Filters
◊ Design of filters is usually carried out in the frequency domain. 

There are two basic steps:
◊ The approximation of a prescribed frequency response(i.e. amplitude 

response, phase response, or both) by a realizable transfer function.
◊ The realization of the approximating transfer function by a physical 

device.

◊ For an approximating transfer function H( f ) to be physically 
realizable, it must represent a stable system.

◊ Stability is defined here on the basis of the bounded input 
bounded output criterion described in Eq. (2.100).

◊ In the following, we specify the corresponding condition for 
stability in terms of the transfer function.

◊ The traditional approach is to replace j2π f with s.

2.8  Filters
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◊ Design of Filters
◊ Ordinarily, the approximating transfer function H’(s) is a 

rational function, which may be expressed in a factored form 
as:

where K is scaling factor; z1, z2, …, zm are the zeros of the 
transfer function; p1, p2,…, pn are its poles.

◊ For low-pass and band-pass filters: m<n.
◊ If the system is causal, all the poles of the transfer function 

H’(s) should be inside the left half of the s-plane, i.e. Re[pi]<0.

2.8  Filters

( ) ( )
( )( ) ( )
( )( ) ( )

'
2π

1 2

1 2

j f s

m

n

H s H f

s z s z s z
K

s p s p s p

==

− − −
=

− − −
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◊ Different Types of Filters
◊ Two popular families of low-pass filters: Butterworth filters

and Chebyshev filters. All their zero are at s= ∞ and the poles 
are confined to the left half of the s-plane.

◊ Butterworth filter
◊ The poles of the transfer function lie on a circle with origin as the center 

and 2πB as the radius, where B is the 3-dB bandwidth of the filter.
◊ Is said to have a maximally flat passband response.

◊ Chebyshev filter
◊ The poles lie on an ellipse.
◊ Provide faster roll-off than Butterworth filter by allowing ripple in the 

frequency response.
◊ Type 1 filters have ripple only in the passband.
◊ Type 2 filters have ripple only in the stopband and are seldom used.

2.8  Filters
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◊ Comparison of the amplitude response of 6th order Butterworth 
low-pass filter with that of 6th order Chebyshev filter.

2.8  Filters



98

◊ A common alternative to both the Butterworth and Chebyshev filters 
is the elliptic filter, which has ripple in both the passband and the 
stopband.

◊ Elliptic filter provide even faster roll-off for a given number of poles 
but at the expense of ripple in both the passband and stopband.

◊ Butterworth filters are the simplest and elliptic filters are the more 
complicated to design in mathematical terms.

◊ The finite-duration impulse response (FIR) filter is often used in 
digital signal processing.

◊ The FIR filter is the equivalent of the tapped delay-line filter 
described in the previous section.

◊ The FIR filter has only zeros; it is thus inherently stable.

2.8  Filters
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◊ Amplitude response of 8th order elliptic bandpass filter.  

2.8  Filters
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◊ Amplitude response of 29-tap FIR low-pass filter.  

2.8  Filters
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◊ Tapped-delay-line Filter (FIR Filter)

2.8  Filters
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2.9 Low-Pass and Band-Pass Signals

◊ Communication using low-pass signals is referred to as baseband
communication.

◊ In some transmission media, there is insufficient spectrum at
baseband (e.g., radio waves) or the properties of media are not
conductive to conducting signal at baseband (e.g., optical fibers). In
these cases, we employ band-pass communications.

Illustration of spectrum of band-pass signal. Illustration of time-domain band-pass signal.
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◊ Narrow-band signal: the bandwidth 2W is small compared to the 
carrier frequency f0.

◊ A real-valued band-pass signal g(t) with non-zero spectrum G( f ) in 
the vicinity of fc may be expressed in the form:

◊ a(t): envelope (non-negative)
◊ : phase

◊ Using the relationship cos(A+B)=cos(A)cos(B)-sin(A)sin(B)

( ) ( ) ( )cos 2π cg t a t f t tφ = + 

( )tφ

( ) ( ) ( ) ( ) ( )cos 2π sin 2πI c Q cg t g t f t g t f t= −

( ) ( ) ( ) ( ) ( ) ( )cos   and  sinI Qg t a t t g t a t tφ φ= =

in-phase of ( )g t quadrature of ( )g t

( ) ( ) ( )

( ) ( )
( )

2 2

1tan

I Q

Q

I

a t g t g t

g t
t

g t
φ −

= +

 
=  

 

(2.123)
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◊ Complex Baseband Representation
◊ Eq. (2.123)  may be written as

where we define 
◊ The and are real, we refer to as the complex

envelope of the band-pass signal.

( ) ( ) ( )Re exp 2π cg t g t j f t =  

( ) ( ) ( )I Qg t g t jg t= +

( ) ( ) ( ) ( ) ( )1 exp 2π exp 2π
2 c cg t g t j f t g t j f t∗ = + −  

( )Ig t ( )Qg t ( )g t

( ) ( ) ( )*1
2 c cG f G f f G f f = − + − − 
 

F→
( ) ( )*1Re

2
A A A= +

( )| |G f

WW− 0 f

( )| |G f

cfcf−

2W2W
0 f

(2.126)
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( ) ( )g t G f∗ ∗ −
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◊ [Example 2.14]  PF pulse (continued) – read by yourself
◊ To determine the complex envelope of the RF pulse 

◊ Assume fcT>>1, so that g(t) is narrow-band

the complex envelope is

and the envelope equals

( ) ( ) rect cos 2π c
tg t A f t
T
 =  
 

( ) ( )Re  rect exp 2π c
tg t A j f t
T

  =     

( )  rect tg t A
T
 =  
 



( ) ( )  rect ta t g t A
T
 = =  
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◊ Summaries of low-pass systems:
◊ x(t) represents the message signal, y(t) is the received or output 

signal, and h(t) is the impulse response of the channel or filter.
◊ X( f )=F[x(t)], H( f )= F[h(t)], Y( f )= F[y(t)].
◊ Time domain

◊ Frequency domain
◊ These equations are valid for linear systems.

◊ Band-pass system
◊ Time domain

◊ Frequency domain

2.10 Band-Pass Systems

( ) ( ) ( )y t x h t dτ τ τ
∞

−∞

= −∫
( ) ( ) ( )Y f H f X f=

( ) ( ) ( )y t x h t dτ τ τ
∞

−∞

= −∫

( ) ( ) ( )Y f H f X f=
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◊ Band-pass systems
◊ When h(t) is the impulse response of a bandpass filter, by 

analogy with g(t) of Eq. 2.126, it may be represented as

where        is the complex impulse response of the bandpass
filter.

◊ This response and its Fourier transform may be expressed as

( ) ( ) ( )Re exp 2π ch t h t j f t =  


( )h t

( ) ( ) ( )

( ) ( ) ( ) ( )*

   Re exp 2π

1         exp 2π exp 2π
2

c

c c

h t h t j f t

h t j f t h t j f t

 =  

 = + − 



 　

( ) ( ) ( )*1
2 c cH f H f f H f f = − + − − 
 

( ) ( )*1Re
2

A A A= +

Positive frequency portions of H( f ) Negative frequency portions of H( f )

2.10 Band-Pass Systems
( ) ( ) ( )Re exp 2π    (2.126)cg t g t j f t =  

(analogous to 2.129)
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◊ Since             is low-pass limited to | f |<B, we can obtain

◊ This low-pass filter response is the frequency-domain equivalent 
of the complex impulse response of the filter.

◊ The output y(t) is also a band-pass signal:

where          is the complex envelope of y(t).

( ) ( )2 ,  0
0,  0c

H f f
H f f

f
 >

− = 
<



( )H f

( ) ( ) ( )Re exp 2 cy t y t j f tπ =  

 ( )y t

( ) ( )*

0,  0
2 ,  0c

f
H f f

H f f
>

− − =  <
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where

◊ The complex envelope of the band-pass output is the convolution 
of the complex envelope of the filter and the input, scaled by the 
factor ½. 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

* *

* *

*

1 1
2 2
1 1 1
2 2 2
1
2

c c c c

c c c c

c c

Y f H f X f

H f f H f f X f f X f f

H f f X f f H f f X f f

Y f f Y f f

=

   = − + − − × − + − −   

 = − − + − − − −  

 = − + − − 

   

   

 

( ) ( ) ( )1
2

Y f H f X f=  

( ) ( ) ( )1
2

y t h t x t= ∗

 

( ) ( )
( ) ( )

*

*=
0

c c

c c

H f f X f f

H f f X f f

− − −

− − −

=

 

 

(2.140)
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◊ The analysis of a band-pass system is complicated due to the 
multiplying factors cos(2πfct) and sin(2πfct).

◊ The significance of Eq. (2.140) is that, we need only concern the 
low-pass functions, 

◊ In other words, the analysis of a band-pass system is replaced by 
an equivalent but much simpler low-pass analysis that completely 
retains the essence of the filtering process.

1

2

3

 ( )  ( )  ( ), ,  and .x t h t y t

( ) ( ) ( )1
2

y t h t x t= ∗

 

2.10 Band-Pass Systems



113

◊ [Example 2.15] Response of an ideal band-pass filter to
a pulsed RF wave
◊ Target: compute the response of an ideal band-pass filter H( f ) 

to an RF pulse of duration T and carrier frequency fc ( fc T>>1)

low-pass equivalent

( )
2, 
0, 

B f B
H f

f B
− < <

=  >


( ) ( ) rect cos 2π c
tx t A f t
T
 =  
 

( ) ( )4  sinc 2h t B Bt=

F→

2.10 Band-Pass Systems
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( ) ( ) rect cos 2π c
tx t A f t
T
 =  
 

( )  rect tx t A
T
 =  
 



low-pass equivalent

( ) ( ) ( )1       (no closed form)
2

y t h t x t⇒ = ∗
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◊ Whenever a signal is transmitted through a dispersive (frequency-
selective) device such as a filter or communication channel, some 
delay is introduced into the output signal in relation to the input 
signal.

◊ In an ideal filter, the phase response varies linearly with frequency 
inside the passband of the filter, in which case the filter introduces a 
constant delay.

◊ Question: what if the phase response of the filter is nonlinear?
◊ Signal Models: assume that a steady sinusoidal signal at frequency fc is 

transmitted through a dispersive channel that has a total phase-shift of β( fc).
◊ Phase delay of the channel: β( fc)/2 πfc [sec] is the time taken by the received 

signal phasor to sweep out this phase lag.

◊ Phase delay is not necessarily the true signal delay.
◊ The true signal delay is represented by the envelope or group delay.

2.11 Phase and Group Delay
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◊ Assume that the dispersive channel is described by the transfer 
function:

where K is a constant and the phase β( f ) is a nonlinear function of 
frequency.

◊ The input signal x(t) consists of a narrow-band signal:

where m(t) is a low-pass (information-bearing) signal with its 
spectrum limited to the frequency interval | f | ≦ W. Assume fc >> W.

◊ By using the Taylor series about the point f=fc and retaining only the 
first two terms:

( ) ( )expH f K j fβ =  

( ) ( ) ( )cos 2π cx t m t f t=

( ) ( ) ( ) ( )β
β β

cc c f f

f
f f f f

f =

∂
+ −

∂


( ) ( ) ( )
0

Taylor series at 

β
!

c

n
nc

c
n

f f

f
f f

n

∞

=

=

−∑
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◊ Define phase delay:

◊ Define group delay:

◊ The transfer function of the channel takes the form:

◊ Equivalent low-pass filter

◊ Low-pass complex envelope and its Fourier transform:

( )1
2 cg f f

f
f

β
τ

π =

∂
= −

∂

( )
2

c
p

c

f
f

β
τ

π
= −

( ) ( ) ( ) ( ) ( ) ( )2 2
cc c f f c p c g

f
f f f f f f f f

f
β

β β β π τ π τ=

∂
+ − ⇒ − − −

∂
 

( ) ( )exp 2 2c p c gH f K j f j f fπ τ π τ − − − 

( ) ( )2 exp 2 2c p gH f K j f j fπ τ π τ− −



( ) ( ) ( ) ( ) ( ),  x t m t X f M f F m t = =  
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( ) ( )2 ,  0
0,  0

                                             (2.134)

c c

c

H f f f f
H f

f f
 − − >

= 
− <
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◊ The Fourier transform of the complex envelope of the received 
signal:

◊ The term exp(-j2πfτg)M( f ) represents the Fourier transform of the 
delayed signal m(t-τg).

◊ Complex envelope of the received signal:

◊ Received signal:

( ) ( ) ( )

( ) ( ) ( )

1              (2.139)
2

exp 2 exp 2c p g

Y f H f X f

K j f j f M fπ τ π τ

=

− −

  



( ) ( ) ( )exp 2 c p gy t K j f m tπ τ τ− −


( ) ( ) ( )

( ) ( )
Re exp 2

cos 2

c

g c p

y t y t j f t

Km t f t

π

τ π τ

 =  
 = − − 



2.11 Phase and Group Delay



120

◊ The sinusoidal carrier wave cos(2πfct) is delay by τp seconds, hence 
τp represents the phase delay. Sometimes, τp is also referred to as the 
carrier delay.

◊ The envelope m(t) is delayed by τg seconds; hence, τg represents the 
envelope or group delay.

◊ τg is related to the slope of the phase β( f ), measured at f=fc.
◊ When the phase response β( f ) varies linearly with frequency, the 

signal is delayed but undistorted.
◊ When this linear condition is violated, we get group delay distortion.
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◊ An example of waveform that represents an analog source of 
information.

2.12 Sources of Information
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◊ Some source are digital in the sense that the information can be 
naturally represented as a sequence of zeros and ones.

◊ The digital waveform can be represented as:

( ) ( )
0

K

k
k

g t b p t kT
=

= −∑

Figure 2.38 (a)
rectangular pulse shape

Figure 2.38 (b)
non-rectangular 
pulse shape

2.12 Sources of Information
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