Communication Systems

2016 Spring-Ch7 exercises solution

Problem 1:

(a) $g(t)=\operatorname{sinc}(200 t)$

The sinc pulse corresponds to a bandwidth $W=100 \mathrm{~Hz}$. Hence, the Nyquist rate is 200 Hz , and the Nyquist rate is $1 / 200$ seconds.
(b) $g(t)=\operatorname{sinc}^{2}(200 t)$

This signal may be viewed as the product of the sinc pulse $\operatorname{sinc}(200 t)$ with itself. Since multiplication in the time domain corresponds to convolution in the frequency domain, we find that the signal $g(t)$ has a bandwidth equal to twice that of the sinc pulse $\operatorname{sinc}(200 t)$, that is, 200 Hz . The Nyquist rate of $g(t)$ is therefore 400 Hz , and the Nyquist interval is $1 / 400$ seconds.
(c) $g(t)=\operatorname{sinc}(200 t)+\operatorname{sinc}^{2}(200 t)$

The bandwidth of $g(t)$ is determined by the highest frequency component of $\operatorname{sinc}(200 t)$ or $\operatorname{sinc}^{2}(200 t)$, whichever one is the largest. With the bandwidth (i.e., highest frequency component of) the sinc pulse $\operatorname{sinc}(200 t)$ equal to 100 Hz and that of the square sinc pulse $\operatorname{sinc}^{2}(200 t)$ equal to 200 Hz , it follows that the bandwidth of $g(t)$ is 200 Hz . Correspondingly, the Nyquist rate of $g(t)$ is 400 Hz , and its Nyquist interval is $1 / 400$ seconds.

Problem 2:

(a) The sampling interval is $T_{s}=125 \mu \mathrm{~s}$. There are 24 channels and 1 sync pulse, so the time allotted to each channel is $T_{c}=T_{s} / 25=5 \mu \mathrm{~s}$. The pulse duration is $1 \mu \mathrm{~s}$, so the time between pulses is $4 \mu \mathrm{~s}$.
(b) If sampled at the Nyquist rate, 6.8 kHz , then $T_{s}=147 \mu \mathrm{~s}, T_{c}=5.88 \mu \mathrm{~s}$, and the time between pulses is $4.88 \mu \mathrm{~s}$.

Problem 3:

(a) Let the message bandwidth be W. Then, sampling the message signal at its Nyquist rate, and using an R-bit code to represent each sample of the message signal, we find that the bit duration is
$T_{b}=\frac{T_{s}}{R}=\frac{1}{2 W R}$
The bit rate is

$$
\frac{1}{T_{b}}=2 W R
$$

The maximum value of message bandwidth is therefore

$$
W_{\max }=\frac{50 \times 10^{6}}{2 \times 7}=3.57 \times 10^{6} \mathrm{~Hz}
$$

(b) The output signal-to-quantizing noise ratio is given by

$$
\begin{aligned}
10 \log _{10}(\mathrm{SNR})_{0} & =1.8+6 R \\
& =1.8+6 \times 7 \\
& =43.8 \mathrm{~dB}
\end{aligned}
$$

Problem 4:

The modulating wave is
$m(t)=A_{m} \cos \left(2 \pi f_{m} t\right)$
The slope of $m(t)$ is

$$
\frac{d m(t)}{d t}=-2 \pi f_{m} A_{m} \sin \left(2 \pi f_{m} t\right)
$$

The maximum slope of $m(t)$ is equal to $2 \pi f_{m} A_{m}$.
The maximum average slope of the approximating signal $m_{a}(t)$ producted by the delta modulation is δ / T_{s}, where δ is the step size and T_{s} is the sampling period. The limiting value of A_{m} is therefore given by
$2 \pi f_{m} A_{m}>\frac{\delta}{T_{s}}$
or
$A_{m}>\frac{\delta}{2 \pi f_{m} T_{s}}$
Assuming a load of 1 ohm , the transmitted power is $A_{m}^{2} / 2$. Therefore, the maximum power that may be transmitted without slope-overload distortion is equal to $\delta^{2} / 8 \pi^{2} f_{m}^{2} T_{s}^{2}$.

Problem 5:

$f_{s}=10 f_{\text {Nyquist }}$
$f_{\text {Nyquist }}=6.8 \mathrm{kHz}$
$f_{s}=10 \times 6.8 \times 10^{3}=6.8 \times 10^{4} \mathrm{~Hz}$
$\frac{\Delta}{T_{s}} \geq \max \left|\frac{d m(t)}{d t}\right|$

For the sinusoidal signal $m(t)=A_{m} \sin \left(2 \pi f_{m} t\right)$, we have $\frac{d m(t)}{d t}=2 \pi f_{m} A_{m} \cos \left(2 \pi f_{m} t\right)$
Hence,
$\left|\frac{d m(t)}{d t}\right|_{\max }=\left|2 \pi f_{m} A_{m}\right|_{\max }$
or, equivalently,
$\frac{\Delta}{T_{s}} \geq\left|2 \pi f_{m} A_{m}\right|_{\text {max }}$
Therefore,

$$
\left|A_{m}\right|_{\max }=\frac{\Delta}{T_{s} \times 2 \pi \times f_{m}}=\frac{\Delta f_{s}}{2 \pi \times f_{m}}=\frac{0.1 \times 6.8 \times 10^{4}}{2 \pi \times 10^{3}}=1.08 \mathrm{~V}
$$

