Chapter5
Problem 1:(5.1)
(a) 

Show that the characteristic function of a Gaussian random variable X of mean  and variance  is


(b) 
Using the result of part (a), show that the  central moment of this Gaussian random variable is


Problem 2: (5.2)

A Gaussian-distributed random variable X of zero mean and variance  is transformed by a piecewise-linear rectifier characterized by the input-output relation (see Figure P5.2):

The probability density function of the new random variable Y is described by
[image: ]
a. Explain the physical reasons for the functional form of this result.
b. Determine the value of the constant k by which the delta function is weighted.
[image: ]

Problem 3:(5.5)

For a complex random process , define the autocorrelation function as


where * represents complex conjugation. Derive the properties of this complex autocorrelation corresponding to 

(a) 

(b) 

(c) 
[bookmark: _GoBack]Problem 4:(5.6)



For the complex random process  where  and  are real-valued random processes given by 


and








where  and  are uniformly distributed over . What is the autocorrelation of ? Suppose? Suppose?
[HINT]
1. 

The mean-square value of the process may be obtained from  simply by putting .


2. 

The autocorrelation function  is an even function of.


3. 

The autocorrelation function  has its maximum magnitude at .



Problem 5:(5.8)
Prove the following two properties of the autocorrelation function  of a random process :
(a) If  contains a dc component equal to  , then  will contain a constant component equal to .
(b) If  contains a sinusoidal component, then  will also contain a sinusoidal component of the same frequency.


Problem 6:(5.12)




Consider a pair of wide-sense stationary random processes  and . Show that the cross-correlations  and  of these processes have the following properties:

(a) 

(b) 
Problem 7:(5.13)




Consider two linear filters connected in cascade as in Figure P5.13. Let  be a wide-sense stationary process with autocorrelation function . The random process appearing at the first filter output is  and that at the second filter output is  
(a) 
Find the autocorrelation function of .
(b) 


Find the cross-correlation function  of  and .
[image: ]


Problem 8:(5.14)



A wide-sense stationary random process  is applied to a linear time invariant filter of impulse response , producing an output .
(a) 




Show that the cross-correlation function  of the output  and the input  is equal to the impulse response  convolved with the autocorrelation function  of the input, as shown by 



Show that the second cross-correlation function  equals


(b) 

Find the cross-spectral densities  and.
(c) 

Assuming that  is a white noise process with zero mean and power spectral density, show that 


Comment on the practical significance of this result.



Problem 9:(5.23)



A stationary, Gaussian process  with zero mean and power spectral density  is applied to a linear filter whose impulse response  is shown in Figure P5.23.  A sample Y is taken of the random process at the filter output at time T.
(a) Determine the mean and variance of Y.
(b) What is the probability density function of Y ?
[image: ]
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