Communication Systems

2018-Ch4 exercises solution

Problem 1:

$$
\begin{aligned}
& s(t)=A_{c} \cos (\theta(t)) \\
& \theta(t)=2 \pi f_{c} t+k_{p} m(t)
\end{aligned}
$$

Let $\beta=0.3$ for $m(t)=\cos \left(2 \pi f_{m} t\right)$.

```
\(\therefore s(t)=A_{c} \cos \left(2 \pi f_{c} t+\beta m(t)\right)\)
    \(=A_{c}\left[\cos \left(2 \pi f_{c} t\right) \cos \left(\beta \cos \left(2 \pi f_{m} t\right)\right)-\sin \left(2 \pi f_{c} t\right) \sin \left(\beta \cos \left(2 \pi f_{m} t\right)\right)\right]\)
```

for small β :
$\cos \left(\beta \cos \left(2 \pi f_{m} t\right)\right) \approx 1$
$\sin \left(\beta \cos \left(2 \pi f_{m} t\right)\right) \approx \beta \cos \left(2 \pi f_{m} t\right)$

$$
\begin{aligned}
\therefore s(t) & =A_{c} \cos \left(2 \pi f_{c} t\right)-\beta A_{c} \sin \left(2 \pi f_{c} t\right) \cos \left(2 \pi f_{m} t\right) \\
& =A_{c} \cos \left(2 \pi f_{c} t\right)-\beta \frac{A_{c}}{2}\left[\sin \left(2 \pi\left(f_{c}+f_{m}\right) t\right)+\sin \left(2 \pi\left(f_{c}-f_{m}\right) t\right)\right]
\end{aligned}
$$

Problem 2:

The frequency deviation is
$\Delta f=k_{f} A_{m}=25 \times 10^{3} \times 20=5 \times 10^{5} \mathrm{~Hz}$
The corresponding value of the modulation index is
$\beta=\frac{\Delta f}{f_{m}}=\frac{5 \times 10^{5}}{10^{5}}=5$
The transmission bandwidth of the FM wave, using Carson's rule, is therefore
$B_{T}=2 f_{m}(1+\beta)=2 \times 100(1+5)=1200 \mathrm{kHz}=1.2 \mathrm{MHz}$

Problem 3:

The filter input is

$$
\begin{aligned}
v_{1}(t) & =g(t) \cdot s(t) \\
& =g(t) \cos \left(2 \pi f_{c} t-\pi k t^{2}\right)
\end{aligned}
$$

The complex envelope of $v_{1}(t)$ is
$\tilde{v}_{1}(t)=g(t) \exp \left(-j \pi k t^{2}\right)$

The impulse response $h(t)$ of the filter is defined in terms of the complex impulse response $\tilde{h}(t)$ as follows
$h(t)=\operatorname{Re}\left[\tilde{h}(t) \exp \left(j 2 \pi f_{c} t\right)\right]$
With
$h(t)=\cos \left(2 \pi f_{c} t+\pi k t^{2}\right)$,
we have

$$
\tilde{h}(t)=\exp \left(j \pi k t^{2}\right)
$$

The complex envelope of the filter output is therefore

$$
\begin{aligned}
\tilde{v}_{0}(t) & =\frac{1}{2} \tilde{h}(t) \tilde{v}_{i}(t) \\
& \left.=\frac{1}{2} \int_{-\infty}^{\infty} g(\tau) \exp \left(-j \pi k t^{2}\right) \exp \left[j \pi k(t-\tau)^{2}\right)\right] d \tau \\
& =\frac{1}{2} \exp \left(j \pi k t^{2}\right) \int_{-\infty}^{\infty} g(\tau) \exp (-j \pi k t \tau) d \tau \\
& =\frac{1}{2} \exp \left(j \pi k t^{2}\right) G(k t)
\end{aligned}
$$

Hence,
$\tilde{v}_{0}(t)=\frac{1}{2}|G(k t)|$
This shows that the envelope of the filter output is, expect for scale factor of $1 / 2$, equal to the magnitude of the Fourier transform of the input signal $g(t)$, with $k t$ playing the role of frequency f.

Problem 4:

$$
\begin{aligned}
& \begin{aligned}
v_{2}= & a v_{1}^{2} \\
s(t) & =A_{c} \cos \left(2 \pi f_{c} t+\beta \sin \left(2 \pi f_{m} t\right)\right) \\
& =A_{c} \cos \left(2 \pi f_{c} t+\beta m(t)\right) \\
v_{2}= & a \cdot s^{2}(t) \\
= & a \cdot A_{c}^{2} \cos ^{2}\left(2 \pi f_{c} t+\beta m(t)\right) \\
= & \frac{A_{c}^{\prime}}{2} \cdot\left(\cos \left(4 \pi f_{c} t+2 \beta m(t)\right)+1\right) \\
= & \frac{A_{c}^{\prime}}{2} \cdot\left(\cos \left(2 \pi\left(2 f_{c}\right) t+2 \beta m(t)\right)+1\right)
\end{aligned}
\end{aligned}
$$

The square-law device produces a new FM signal centred as $2 f_{c}$ and with a frequency deviation of 2β. This doubles the frequency deviation.

Problem 5:

The envelope detector input is

$$
\begin{align*}
v(t) & =s(t)-s(t-T) \\
& =A_{c} \cos \left[2 \pi f_{c} t+\phi(t)\right]-A_{c} \cos \left[2 \pi f_{c}(t-T)+\phi(t-T)\right] \\
& =-2 A_{c} \sin \left[\frac{2 \pi f_{c}(t-T)+\phi(t)+\phi(t-T)}{2}\right] \sin \left[\frac{2 \pi f_{c} T+\phi(t)-\phi(t-T)}{2}\right] \tag{1}
\end{align*}
$$

where

$$
\phi(t)=\beta \sin \left(2 \pi f_{m} t\right)
$$

The phase difference $\phi(t)-\phi(t-T)$ is

$$
\begin{aligned}
\phi(t)-\phi(t-T) & =\beta \sin \left(2 \pi f_{m} t\right)-\beta \sin \left[2 \pi f_{m}(t-T)\right] \\
& =\beta\left[\sin \left(2 \pi f_{m} t\right)-\sin \left(2 \pi f_{m} t\right) \cos \left(2 \pi f_{m} T\right)+\cos \left(2 \pi f_{m} t\right) \sin \left(2 \pi f_{m} T\right)\right] \\
& \approx \beta\left[2 \pi f_{m} t-2 \pi f_{m} t+2 \pi f_{m} T \cdot \cos \left(2 \pi f_{m} t\right)\right] \\
& =2 \pi \Delta f T \cdot \cos \left(2 \pi f_{m} t\right)
\end{aligned}
$$

where

$$
\Delta f=\beta f_{m}
$$

Therefore, noting that $2 \pi f_{c} T=\pi / 2$, we may write
$\sin \left[\frac{2 \pi f_{c}(t-T)+\phi(t)-\phi(t-T)}{2}\right] \approx \sin \left[\pi f_{c} T+\pi \Delta f T \cdot \cos \left(2 \pi f_{m} t\right)\right]$
$=\sin \left[\frac{\pi}{4}+\pi \Delta f T \cdot \cos \left(2 \pi f_{m} t\right)\right]$
$=\frac{\sqrt{2}}{2} \cos \left[\pi \Delta f T \cdot \cos \left(2 \pi f_{m} t\right)\right]+\frac{\sqrt{2}}{2} \sin \left[\pi \Delta f T \cdot \cos \left(2 \pi f_{m} t\right)\right]$
$=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} \pi \Delta f T \cdot \cos \left(2 \pi f_{m} t\right)$
where we have made use of the fact that $\pi \Delta f T \ll 1$. We may therefore rewrite Eq. (1) as
$v(t) \approx-\sqrt{2} A_{c}\left[1+\pi \Delta f T \cdot \cos \left(2 \pi f_{m} t\right)\right] \cdot \sin \left[\pi f_{c}(2 t-T)+\frac{\phi(t)+\phi(t-T)}{2}\right]$
Accordingly, the envelope detector output is
$a(t) \approx \sqrt{2} A_{c}\left[1+\pi \Delta f T \cdot \cos \left(2 \pi f_{m} t\right)\right]$
which, except for a basis term, is proportional to the modulating wave.

