2018-Chapter 2 exercises

Problem 1:

The Fourier transform $G(f)$ of a signal $g(t)$ is defined by
$G(f)= \begin{cases}1, & f>0 \\ \frac{1}{2}, & f=0 \\ 0, & f<0\end{cases}$
Determined the signal $g(t)$.

Problem 2:

Evaluate the Fourier transform of the damped sinusoidal wave
$g(t)=\exp (-t) \sin \left(2 \pi f_{c} t\right) \mathrm{u}(t)$, where $\mathrm{u}(\mathrm{t})$ is the unit function.

Problem 3:

The rectangular RF pulse

$$
x(t)= \begin{cases}A \cos \left(2 \pi f_{c} t\right), & 0 \leq t \leq T \\ 0, & \text { elsewise }\end{cases}
$$

is applied to a linear filter with impulse response

$$
h(t)=x(T-t)
$$

Assume that the frequency f_{c} equals a large integer multiple of $1 / T$. Determine the response of the filter.

