\[s(t) = A_c [1 + k_a m(t)] \cos(2 \pi f_c t) \]

where \(m(t) = \sin(2 \pi f_s t) \) and \(f_s = 5 \text{ kHz} \) and \(f_c = 1 \text{ MHz} \).

\[s(t) = A_c \left[\cos(2 \pi f_c t) + \frac{k_a}{2} (\sin(2 \pi (f_c + f_s) t) + \sin(2 \pi (f_c - f_s) t)) \right] \]

\(s(t) \) is the signal before transmission.

The filter bandwidth is: \(BW = \frac{f_c}{Q} = \frac{10^6}{175} = 5714 \text{ Hz} \)

\(m(t) \) lies close to the 3dB bandwidth of the filter, \(m(t) \) is therefore attenuated by a factor of a half.

\[m'(t) = 0.5 m(t) \quad \text{or} \quad k_a' = 0.5 k_a \]

\[k_a' = 0.25 \]

The modulation depth is 0.25
Problem 3.4
Consider the square-law characteristic:

\[v_2(t) = a_1 v_1(t) + a_2 v_1^2(t) \] \hspace{1cm} (1)

where \(a_1 \) and \(a_2 \) are constants. Let

\[v_1(t) = A_c \cos(2\pi f_c t) + m(t) \] \hspace{1cm} (2)

Therefore substituting Eq. (2) into (1), and expanding terms:

\[v_2(t) = a_1 A_c \left[1 + \frac{2a_2}{A_1} m(t) \right] \cos(2\pi f_c t) \]

\[+ a_1 m(t) + a_2 m^2(t) + a_2 A_c^2 \cos^2(2\pi f_c t) \] \hspace{1cm} (3)

The first term in Eq. (3) is the desired AM signal with \(k_a = 2a_2/a_1 \). The remaining three terms are unwanted terms that are removed by filtering.

Let the modulating wave \(m(t) \) be limited to the band \(-W \leq f \leq W\), as in Fig. 1(a). Then, from Eq. (3) we find that the amplitude spectrum \(|V_2(f)| \) is as shown in Fig. 1(b). It follows therefore that the unwanted terms may be removed from \(v_2(t) \) by designing the tuned filter at the modulator output of Fig. P2.2 to have a mid-band frequency \(f_c \) and bandwidth \(2W \), which satisfy the requirement that \(f_c > 3W \).

![Figure 1](image-url)
Problem 3.6

Let

\[v_1(t) = A_c[1 + k_a m(t)] \cos(2\pi f_c t) \]

(a) Then the output of the square-law device is

\[v_2(t) = a_1 v_1 + a_2 v_1^2(t) \]

\[= a_1 A_c [1 + k_a m(t)] \cos(2\pi f_c t) \]

\[+ \frac{1}{2} a_2 A_c^2 [1 + k_a m(t) + k_a^2 m^2(t)][1 + \cos(4\pi f_c t)] \]

(b) The desired signal, namely \(a_2 A_c^2 k_a m(t) \), is due to the \(a_2 v_1^2(t) \) - hence, the name "square-law detection". This component can be extracted by means of a low-pass filter. This is not the only contribution within the baseband spectrum, because the term \(1/2 a_2 A_c^2 k_a^2 m^2(t) \) will give rise to a plurality of similar frequency components. The ratio of wanted signal to distortion is \(2/k_a m(t) \). To make this ratio large, the percentage modulation, that is, \(|k_a m(t)|\) should be kept small compared with unity.
Problem 3.7

The squarer output is

\[v_1(t) = A_c^2 [1 + k_d m(t)]^2 \cos^2 (2\pi f_c t) \]
\[= \frac{A_c^2}{2} [1 + 2k_d m^2(t)][1 + \cos(4\pi f_c t)] \]

The amplitude spectrum of \(v_1(t) \) is therefore as follows, assuming that \(m(t) \) is limited to the interval \(-W \leq f \leq W\):

Since \(f_c > 2W \), we find that \(2f_c - 2W > 2W \). Therefore, by choosing the cutoff frequency of the low-pass filter greater than \(2W \), but less than \(2f_c - 2W \), we obtain the output

\[v_2(t) = \frac{A_c^2}{2} [1 + k_d m(t)]^2 \]

Hence, the square-rooter output is

\[v_3(t) = \frac{A_c}{\sqrt{2}} [1 + k_d m(t)] \]

which, except for the dc component \(\frac{A_c}{\sqrt{2}} \), is proportional to the message signal \(m(t) \).

Problem 3.9

The two AM modulator outputs are

\[s_1(t) = A_c [1 + k_d m(t)] \cos(2\pi f_c t) \]
\[s_2(t) = A_c [1 + k_d m(t)] \cos(2\pi f_c t) \]

Subtracting \(s_2(t) \) from \(s_1(t) \):

\[s(t) = s_2(t) - s_1(t) \]
\[= 2k_d m(t) \cos(2\pi f_c t) \]

which represents a DSB-SC modulated wave.
Problem 3.11

(a) Multiplying the signal by the local oscillator gives:

\[s_1(t) = A_c m(t) \cos(2\pi f_c t) \cos[2\pi (f_c + \Delta f)t] \]

\[= \frac{A_c}{2} m(t) \{ \cos(2\pi \Delta ft) + \cos[2\pi (f_c + \Delta ft)] \} \]

Low pass filtering leaves:

\[s_2(t) = \frac{A_c}{2} m(t) \cos(2\pi \Delta ft) \]

Thus the output signal is the message signal modulated by a sinusoid of frequency \(\Delta f \).

(b) If \(m(t) = \cos(2\pi f_m t) \),

then \(s_2(t) = \frac{A_c}{2} \cos(2\pi f_m t) \cos(2\pi \Delta ft) \)

\[Y(f) = \frac{A_c^2}{2} \int_{-\infty}^{\infty} M(\lambda)M(f-\lambda)d\lambda + \frac{A_c^2}{4} \left[\int_{-\infty}^{\infty} M(\lambda)M(f-2f_c-\lambda)d\lambda + \int_{-\infty}^{\infty} M(\lambda)M(f+2f_c-\lambda)d\lambda \right] \]

where \(M(f) = F[m(t)] \).
(b) At $f = 2f_c$, we have

\[Y(2f_c) = \frac{A_c^2}{2} \int_{-\infty}^{\infty} M(\lambda)M(2f_c - \lambda)\, d\lambda \]

\[+ \frac{A_c^2}{4} \left[\int_{-\infty}^{\infty} M(\lambda)M(-\lambda)\, d\lambda + \int_{-\infty}^{\infty} M(\lambda)M(4f_c - \lambda)\, d\lambda \right] \]

Since $M(-\lambda) = M^*(\lambda)$, we may write

\[Y(2f_c) = \frac{A_c^2}{2} \int_{-\infty}^{\infty} M(\lambda)M(2f_c - \lambda)\, d\lambda \]

\[+ \frac{A_c^2}{4} \left[\int_{-\infty}^{\infty} |M(\lambda)|^2\, d\lambda + \int_{-\infty}^{\infty} M(\lambda)M(4f_c - \lambda)\, d\lambda \right] \quad (1) \]

With $m(t)$ limited to $-W \leq f \leq W$ and $f_c > W$, we find that the first and third integrals reduce to zero, and so we may simplify Eq. (1) as follows

\[Y(2f_c) = \frac{A_c^2}{4} \int_{-\infty}^{\infty} |M(\lambda)|^2\, d\lambda \]

\[= \frac{A_c^2}{4} E \]

where E is the signal energy (by Rayleigh’s energy theorem). Similarly, we find that

\[Y(-2f_c) = \frac{A_c^2}{4} E \]

The band-pass filter output, in the frequency domain, is therefore defined by

\[V(f) \approx \frac{A_c^2}{4} E \Delta f \{ \delta(f - 2f_c) + \delta(f + 2f_c) \} \]

Hence,

\[v(t) \approx \frac{A_c^2}{4} E \Delta f \cos(4\pi f_c t) \]
3.16 (a)

\[s(t) = \frac{1}{2} a \cdot A_m A_c \cos(2\pi f_m t + f_c t) + \frac{1}{2} (1-a) A_m A_c \cos(2\pi f_m t) \]

\[s(t) = \frac{A_m A_c}{2} \left[a(\cos(2\pi f_c t) \cos(2\pi f_m t) - \sin(2\pi f_c t) \sin(2\pi f_m t)) + (1-a)(\cos(2\pi f_c t) \cos(2\pi f_m t) + \sin(2\pi f_c t) \sin(2\pi f_m t)) \right] \]

\[s(t) = \frac{A_m A_c}{2} \left[\cos(2\pi f_c t) \cos(2\pi f_m t) + (1-2a) \sin(2\pi f_c t) \sin(2\pi f_m t) \right] \]

\[\therefore m_1(t) = \frac{A_m}{2} \cos(2\pi f_m t) \]

\[m_2(t) = \frac{A_m}{2} (1-2a) \sin(2\pi f_m t) \]

b) Let:

\[s(t) = \frac{1}{2} A_m m(t) \cos(2\pi f_c t) + \frac{1}{2} A_m m(t) \sin(2\pi f_c t) \]

By adding the carrier frequency:

\[s(t) = A_c [1 + \frac{1}{2} k_m m(t)] \cos(2\pi f_c t) + \frac{1}{2} k_m A_c m(t) \sin(2\pi f_c t) \]

where \(k_m \) is the percentage modulation.

After passing the signal through an envelope detector, the output will be:

\[|s(t)| = A_c \left\{ \left[1 + \frac{1}{2} k_m m(t) \right]^2 + \left[\frac{1}{2} k_m m(t) \right]^2 \right\}^{\frac{1}{2}} \]

\[= A_c \left[1 + \frac{1}{2} k_m m(t) \right] \left\{ 1 + \left[\frac{1}{2} k_m m(t) \left[\frac{1}{2} k_m m(t) + 1 \right] \right]^2 \right\}^{\frac{1}{2}} \]

The second factor in \(|s(t)|\) is the distortion term \(d(t)\). For the example in (a), this becomes:

\[d(t) = \left\{ 1 + \frac{(1-2a) \sin(2\pi f_m t)}{1 + \frac{1}{2} \cos(2\pi f_m t)} \right\}^{\frac{1}{2}} \]

c) Ideally, \(d(t)\) is equal to one. However, the distortion factor increases with decreasing \(a\). Therefore, the worst case exists when \(a = 0\).
Problem 3.19

(a,b) The spectrum of the message signal is illustrated below:

Correspondingly, the output of the upper first product modulator has the following spectrum:

The output of the lower first product modulator has the spectrum:

The output of the upper low pass filter has the spectrum
The output of the lower low pass filter has the spectrum:

\[
\begin{array}{c}
\frac{1}{2} M_1(f - f_0) \\
0 \rightarrow f_0 - f_0 \\
\frac{1}{2} M_1(f + f_0) \\
f_0 + f_0
\end{array}
\]

The output of the upper second product modulator has the spectrum:

\[
\begin{array}{c}
\frac{1}{4} M_2(f - f_0 + f_c) \\
\frac{1}{4} M_2(f - f_0 - f_c) \\
\frac{1}{4} M_2(f + f_0 + f_c) \\
\frac{1}{4} M_2(f + f_0 - f_c)
\end{array}
\]

The output of the lower second product modulator has the spectrum:

\[
\begin{array}{c}
\frac{1}{4} M_2(f - f_0 + f_c) \\
\frac{1}{4} M_2(f - f_0 - f_c) \\
\frac{1}{4} M_2(f + f_0 + f_c) \\
\frac{1}{4} M_2(f + f_0 - f_c)
\end{array}
\]

Adding the two second product modulator outputs, their upper sidebands add constructively while their lower sidebands cancel each other.

(c) To modify the modulator to transmit only the lower sideband, a single sign change is required in one of the channels. For example, the lower first product modulator could multiply the message signal by \(-\sin(2\pi f_c t)\). Then, the upper sideband would be cancelled and the lower one transmitted.
Problem 3.21

(a) The first product modulator output is

\[v_1(t) = m(t) \cos(2\pi f_c t) \]

The second product modulator output is

\[v_2(t) = v_2(t) \cos(2\pi (f_c + f_b) t) \]

The amplitude spectra of \(m(t) \), \(v_1(t) \), \(v_2(t) \), \(v_3(t) \) and \(s(t) \) are illustrated on the next page. We may express the voice signal \(m(t) \) as

\[m(t) = \frac{1}{2} [m_+(t) + m_-(t)] \]

where \(m_+(t) \) is the pre-envelope of \(m(t) \), and \(m_-(t) = m_+(t)^* \) is its complex conjugate. The Fourier transforms of \(m_+(t) \) and \(m_-(t) \) are defined by (See Appendix 2)

\[M_+(f) = \begin{cases} 2M(f), & f > 0 \\ 0, & f < 0 \end{cases} \]

\[M_-(f) = \begin{cases} 0, & f > 0 \\ 2M(f), & f < 0 \end{cases} \]

Comparing the spectrum of \(s(t) \) with that of \(m(t) \), we see that \(s(t) \) may be expressed in terms of \(m_+(t) \) and \(m_-(t) \) as follows:

\[s(t) = \frac{1}{8} m_+(t) \exp(-j2\pi f_b t) + \frac{1}{8} m_-(t) \exp(j2\pi f_b t) \]

\[= \frac{1}{8} [m(t) + j\dot{m}(t)] \exp(-j2\pi f_b t) + \frac{1}{8} [m(t) - j\dot{m}(t)] \exp(j2\pi f_b t) \]

\[= \frac{1}{4} m(t) \cos(2\pi f_b t) + \frac{1}{4} \dot{m}(t) \sin(2\pi f_b t) \]

(b) With \(s(t) \) as input, the first product modulator output is

\[v_1(t) = s(t) \cos(2\pi f_c t) \]